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Joseph Henry Laboratories, Princeton University

Princeton NJ 08544, U.S.A.

E-mail: drodrigu@princeton.edu

Abstract: In this paper we study the holographic dual, in several spacetime dimensions,
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defects of various codimensionalities, where the matter fields are located. In the holographic

description the matter is added by considering flavor brane probes in the supergravity

backgrounds generated by color branes, while the Higgs branch is obtained when the color

and flavor branes recombine with each other. We show that, generically, the holographic

dual of the Higgs phase is realized by means of the addition of extra flux on the flavor

branes and by choosing their appropriate embedding in the background geometry. This

suggests a dielectric interpretation in terms of the color branes, whose vacuum solutions

precisely match the F- and D-flatness conditions obtained on the field theory side. We

further compute the meson mass spectra in several cases and show that when the defect

added has codimension greater than zero it becomes continuous and gapless.
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1. Introduction

The gauge/gravity correspondence [1, 2] has been a breakthrough in our understanding of

both gravity (and string theory) and gauge field theories. However, a major issue remains

to be the inclusion of open string degrees of freedom, which would correspond to matter

in the fundamental representation in the gauge field theory side of the correspondence.
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A first step was taken in [3, 4], where it was suggested that one can add dynamical

open string degrees of freedom by adding Nf intersecting Dq-branes to the original Dp-

branes. In the limit in which the number of Dq-branes is much smaller than the number

of Dp-branes, we can treat the system effectively as Nf probe branes in the background

generated by the Nc Dp-branes, which, once we take the decoupling limit, will reduce to

the corresponding near horizon geometry. Generically, the two types of branes overlap

partially, which implies that the additional Dq-branes create a defect on the worldvolume

theory of the Dp-branes. In the dual gauge theory description the extra branes give rise to

additional matter, confined to live inside the defect, which comes from the Dp-Dq strings.

When q > p, the decoupling limit forces the SU(Nf ) gauge symmetry on the Dq-brane to

decouple. It then appears as a global flavor symmetry for the extra matter, which is in

the fundamental representation of the flavor group. In this context, the fluctuations of the

flavor branes should correspond to the mesons in the dual gauge theory. The study of these

mesons was started in [5] for the D7-brane in the AdS5 × S5 geometry, and it was further

extended to other flavor branes in several backgrounds ([6]- [22]) (for a review see [23]).

The dual theories to these brane intersections are in the Coulomb phase. However

one could have more involved situations, such as Higgs phases. On the field theory side

the Higgs phase corresponds to having a non-zero VEV of the quark fields. As it is well-

known (see e.g. ref. [24]) the Higgs branch of gauge theories can be realized in string

theory by recombining color and flavor branes. This recombination can be described in two

different and complementary ways. From the point of view of the flavor brane (the so-called

macroscopic picture) the recombination is achieved by a non-trivial embedding of the brane

probe in the background geometry and/or by a non-trivial flux of the worldvolume gauge

field. On the other hand, the description of the recombination from the point of view of the

color brane defines the microscopic picture. In most of the cases this microscopic picture

can be regarded as a dielectric effect [25], in which a set of color branes gets polarized into

a higher-dimensional flavor brane. Interestingly, the microscopic description of the Higgs

branch allows a direct relation with the field theory analysis and the micro-macro matching

is essential to understand how gauge theory quantities are encoded into the configuration

of the flavor brane.

In ref. [26] the Higgs phase of the D3-D7 intersection was studied (see also ref. [27]).

It was proposed in [26, 27] that, from the point of view of the D7-brane, one can realize a

(mixed Coulomb-)Higgs phase of the D3-D7 system by switching on an instanton config-

uration of the worldvolume gauge field of the D7-brane. This instantonic gauge field lives

on the directions of the D7-brane worldvolume that are orthogonal to the gauge theory

directions. The size of the instanton has been identified in [26, 27] with the VEV of the

quark fields. The meson spectra depends on this size and was shown in [26] to display, in

the limit of infinite instanton size, an spectral flow phenomenon.

The defect conformal field theory associated to the D3-D3 intersection was studied

in ref. [28], where the corresponding fluctuation/operator dictionary was established. The

meson mass spectra of this system when the two sets of D3-branes are separated was

computed analytically in ref. [20]. In [28] the Higgs branch of the D3-D3 system was

identified as a particular holomorphic embedding of the probe D3-brane in the AdS5 × S5
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geometry, which was shown to correspond to the vanishing of the F- and D-terms in the

dual superconformal field theory (see also refs. [29, 30]).

The Higgs phase of the dual to the D3-D5 intersection was discussed in ref. [31]. On

the field theory side [32] the D3-D5 system describes the dynamics of a 2 + 1 dimensional

defect containing fundamental hypermultiplets living inside the 3 + 1 dimensional N = 4

SY M . The meson spectra on the Coulomb branch has been obtained in [20]. In [31] it

was found that, in the supergravity dual, the Higgs phase corresponds to adding magnetic

worldvolume flux inside the flavor D5-brane transverse to the D3-branes. This worldvol-

ume gauge field has the non-trivial effect of inducing D3-brane charge in the D5-brane

worldvolume, which in turn suggests an alternative microscopical description in terms of

D3-branes expanded to a D5-brane due to dielectric effect [25]. Indeed, the vacuum con-

ditions of the dielectric theory can be mapped to the F and D flatness constraints of the

dual gauge theory, thus justifying the identification with the Higgs phase. The Higgs vacua

of the field theory involve a non-trivial dependence of the defect fields on the coordinate

transverse to the defect. In the supergravity side this is mapped to a bending of the fla-

vor brane, which is actually required by supersymmetry (see [33]). Moreover, in [31] the

spectrum of transverse fluctuations was computed in the Higgs phase, with the result that

the discrete spectrum is lost. The reason is that the IR theory is modified because of the

non-trivial profile of the flavor brane, so that in the Higgs phase, instead of having an

effective AdS ×S worldvolume for the flavor brane, one has Minkowski space, thus loosing

the KK-scale which would give rise to a discrete spectrum.

In this paper we will generalize the results on the Higgs branch of refs. [26, 28] and [31]

to the rest of supersymmetric brane intersections. In general, each type of intersection is

dual to a defect hosting a field theory living inside a bulk gauge theory. Therefore, we

can label each case by the codimensionality of the defect. We will see that generically all

of them behave in a similar way to the D3-D5 case, in the sense that the Higgs phase is

achieved by adding extra worldvolume flux to the flavor brane. However, as we will see, in

not all the cases the discrete meson spectrum is lost.

We begin in section 2 by analyzing the codimension zero defect, which corresponds to

the Dp-D(p+4) intersection. We first study the field theory of the D3-D7 system, where

we identify a mixed Coulomb-Higgs branch which is given by the vanishing of both the D-

and F-terms. This branch is characterized by a non-zero commutator of the adjoint fields

of N = 4 SYM which, from the point of view of the flavor brane, corresponds to having

a non-vanishing flux of the worldvolume gauge field along the directions orthogonal to the

color brane. We will then describe such non-commutative scalars by using the Myers action

for a dielectric D3-brane and we will argue that, macroscopically, this configuration can

be described in terms of a D7-brane with a self-dual instantonic gauge field. From this

matching between the D3- and D7-brane descriptions we will be able to extract the relation

proposed in ref. [26] between the VEV of the quark field and the size of the instanton.

Afterwards we perform the computation of the meson spectrum of the general Dp-D(p+4)

systems, which in this case remains discrete. We estimate the value of the mesonic mass

gap as a function of the instanton size. For large instantons this gap is independent of the

size, in agreement with the spectral flow found in ref. [26], while for small instantons the
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mass gap is proportional to the size of the instanton and vanishes in the zero-size limit.

In section 3 we discuss the codimension one defects, whose most prominent example is

the D3-D5 intersection studied in [31]. In this paper we study the general Dp-D(p+2) case

with worldvolume flux on the D(p+2)-brane, which also admits a dielectric interpretation.

We then analyze the meson spectrum, which is continuous and gapless as in the D3-D5

case studied in [31]. We will establish this result for the full set of fluctuations of the

D(p+2)-brane probe, which are analyzed in appendix A by using the same techniques as

those employed in refs. [20, 21] to study the Coulomb branch. We then study the F1-Dp

intersection which, in particular, for p = 3 corresponds to the S-dual version of the D1-D3

system.

In section 4 we study a close relative to the Dp-D(p+2) intersection, namely the M2-

M5 intersection in M-theory. In this case, we see that we can dissolve M2-branes by turning

on a three-form flux on the M5-brane worldvolume and introducing some bending of the

M5-brane. The supersymmetry of this configuration is explicitly confirmed in appendix B

by looking at the kappa symmetry of the embedding. However, in this case a microscopical

description is not at hand, since it would involve an action for coincident M2-branes which

is not known at present.

Section 5 is devoted to the analysis of the codimension two defects, which correspond

to the Dp-Dp intersections. This case, as anticipated in [28, 29], is somehow different, since

the Higgs phase is realized by the choice of a particular embedding of the probe Dp-brane

with no need of extra flux. This case is rather particular since, as we will show, the profile

can be an arbitrary holomorphic curve in suitable coordinates, although only one of them

gives the desired Higgs phase, while the rest remain unidentified.

We then finish in section 6 with some conclusions.

2. The codimension zero defect

Let us start considering the D3-D7 intersection, where the D3-branes are fully contained

in the D7-branes as shown in the following array:

1 2 3 4 5 6 7 8 9

D3 : × × ×
D7 : × × × × × × ×

(2.1)

Clearly, the D3-D7 string sector gives rise to extra fundamental matter living in the

3 + 1 common directions. It can be seen that the dual gauge theory is a N = 2 SY M

theory in 3 + 1 dimensions obtained by adding Nf N = 2 fundamental hypermultiplets to

the N = 4 SY M theory. We can further break the classical conformal invariance of the

theory by adding a mass term for the quark hypermultiplets. The lagrangian is given by

([26]):

L = τ

∫

d2θd2θ̄
(

tr(Φ†
I eV ΦIe

−V ) + Q†
ie

V Qi + Q̃ie
−V Q̃i†

)

+ τ

∫

d2θ
(

tr(WαWα) + W
)

+ τ

∫

d2θ̄
(

tr(W̄α̇W̄ α̇) + W̄
)

, (2.2)
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where the superpotential of the theory is given by:

W = Q̃i(m + Φ3)Q
i +

1

3
ǫIJK Tr

[

ΦIΦJΦK

]

. (2.3)

In eq. (2.2) we are working in N = 1 language, where Qi, (Q̃i) i = 1, · · · , Nf are the chiral

(antichiral) superfields in the hypermultiplet, while ΦI are the adjoint scalars of N = 4

SY M once complexified as Φ1 = X1 + iX2 , Φ2 = X3 + iX4 and Φ3 = X5 + iX6 where

XI (I = 1, · · · 6) is the scalar which corresponds to the direction I +3 in the array (2.1). It

is worth mentioning that an identity matrix in color space is to be understood to multiply

the mass parameter of the quarks m.

We are interested in getting the classical SUSY vacua of this theory, which can be

obtained by imposing the corresponding D- and F -flatness conditions that follow from the

lagrangian (2.2). Let us start by imposing the vanishing of the F -terms corresponding to

the quark hypermultiplets, which amounts to set:

Q̃i(Φ3 + m) = 0 , (Φ3 + m)Qi = 0 . (2.4)

These equations can be satisfied by taking Φ3 as:

Φ3 =























m̃1

. . .

m̃N−k

−m
. . .

−m























, (2.5)

where the number of m′s is k and, thus, in order to have Φ3 in the Lie algebra of SU(N),

one must have ΣN−k
j=1 m̃j = km. This choice of Φ3 lead us to take Qi and Q̃i as:

Q̃i =
(

0 · · · 0, q̃1
i · · · , q̃k

i

)

, Qi =























0
...

0

qi
1
...

qi
k























. (2.6)

Indeed, it is trivial to check that the values of Φ3, Q̃i and Qi displayed in eqs. (2.5)

and (2.6) solve eq. (2.4). Since the quark VEV in this solution has some components which

are zero and others that are different from zero, this choice of vacuum leads to a mixed

Coulomb-Higgs phase.

The vanishing of the F -terms associated to the adjoint scalars gives rise to:

[Φ1,Φ3] = [Φ2,Φ3] = 0 , (2.7)
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together with the equation:

Qi Q̃i + [Φ1,Φ2] = 0 . (2.8)

In (2.8) Qi Q̃i denotes a matrix in color space of components Qi
aQ̃

b
i . For a vacuum election

as in eq. (2.6) we can restrict ourselves to the lower k × k matrix block, and we can write

eq. (2.8) as:

qiq̃i + [Φ1,Φ2] = 0 , (2.9)

where now, and it what follows, it is understood that Φ1 and Φ2 are k × k matrices.

Eq. (2.9) contains an important piece of information since it shows that a non-vanishing

VEV of the quark fields q and q̃ induces a non-zero commutator of the adjoint fields Φ1 and

Φ2. Therefore, in the Higgs branch, some scalars transverse to the D3-brane are necessarily

non-commutative. Notice that Φ1 and Φ2 correspond precisely to the directions transverse

to the D3-brane which lie on the worldvolume of the D7-brane (i.e. they correspond to the

directions 4, · · · 7 in the array (2.1)). This implies that the description of this intersection

from the point of view of the D7-branes must involve a non-trivial configuration of the

worldvolume gauge field components of the latter along the directions 4, · · · 7. We will argue

in the next subsection that this configuration corresponds to switching on an instantonic

flux along these directions.

In order to match the field theory vacuum with our brane description we should also

be able to reproduce the D-flatness condition arising from the lagrangian (2.2). Assuming

that the quark fields Q̃ and Q are only non-vanishing on the lower k × k block, we can

write this condition as:

|qi|2 − |q̃i|2 + [Φ1,Φ
†
1] + [Φ2,Φ

†
2] = 0 . (2.10)

The constraints (2.9) and (2.10), together with the condition [ΦI ,Φ3] = 0, define the mixed

Coulomb-Higgs phase of the theory.

2.1 Gravity dual of the mixed Coulomb-Higgs phase

As it is well-known, there is a one-to-one correspondence between the Higgs phase of N = 2

gauge theories and the moduli space of instantons ([34 – 36]). This comes from the fact

that the F - and D-flatness conditions can be directly mapped into the ADHM equations

(see [37] for a review). Because of this map, we can identify the Higgs phase of the gauge

theory with the space of 4d instantons. In the context of string theory, a N = 2 theory can

be engineered by intersecting Dp with D(p+4) branes over a p + 1 dimensional space. In

particular, if we consider the D3-D7 system, the low energy effective lagrangian is precisely

given by (2.2). In this context, the Higgsing of the theory amounts to adding some units of

instantonic DBI flux in the subspace transverse to the D3 but contained in the D7, which

provides a natural interpretation of the Higgs phase-ADHM equations map.

Let us analyze this in more detail. Suppose we have N D3-branes and Nf D7-branes.

In the field theory limit in which we take α′ to zero but keeping fixed the Yang-Mills

coupling of the theory on the D3’s, the gauge dynamics on the D7-brane is decoupled.

Then, the SU(Nf ) gauge symmetry of the D7-brane is promoted to a global SU(Nf ) flavor

– 6 –
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symmetry on the effective theory describing the system, which is N = 4 SYM plus Nf

N = 2 hypermultiplets arising from the D3-D7 strings; and whose lagrangian is the one

written in (2.2). The gravity dual of this theory would be obtained by replacing the branes

by their backreacted geometry and taking the appropriate low energy limit. However, in

the limit in which Nf ≪ N we can consider the D7-branes as probes in the near-horizon

geometry created by the D3-branes, namely AdS5 × S5:

ds2 =
r2

R2
dx2

1,3 +
R2

r2
d~r 2 , (2.11)

where ~r is the six-dimensional vector along the directions orthogonal to the stack of D3-

branes and the radius R is given by R4 = 4π gs N (α′)2. In addition, dx2
1,3 is the metric

of the 3 + 1 dimensional Minkowski space along which the D3-branes lie. The type IIB

supergravity background also includes a 4-form RR potential given by:

C(4) =

(

r2

R2

)2

dx0 ∧ · · · ∧ dx3 . (2.12)

Let us now write the AdS5 × S5 background in a system of coordinates more suitable

four our purposes. Let ~y = ( y1, · · · , y4 ) be the coordinates along the directions 4, · · · , 7 in

the array (2.1) and let us denote by ρ the length of ~y (i.e. ρ2 = ~y ·~y). Moreover, we will call

~z = (z1, z2) the coordinates 8, 9 of (2.1). Notice that ~z is a vector in the directions which

are orthogonal to both stacks of D-branes. Clearly, r2 = ρ2 + ~z 2 and the metric (2.11)

can be written as:

ds2 =
ρ2 + ~z 2

R2
dx2

1,3 +
R2

ρ2 + ~z 2
(d~y 2 + d~z 2) . (2.13)

The Dirac-Born-Infeld (DBI) action for a stack of Nf D7-branes is given by:

SD7
DBI = −T7

∫

d8ξ e−φ Str

{

√

− det ( g + F )

}

, (2.14)

where ξa is a system of worldvolume coordinates, φ is the dilaton, g is the induced metric

and F is the field strength of the SU(Nf ) worldvolume gauge group1. Let us assume

that we take ξa = (xµ , yi ) as worldvolume coordinates and that we consider a D7-brane

embedding in which |~z| = L, where L represents the constant transverse separation between

the two stacks of D3- and D7- branes. Notice that this transverse separation will give a

mass L/2πα′ to the D3-D7 strings, which corresponds to the quark mass in the field theory

dual. For an embedding with | ~z | = L, the induced metric takes the form:

gxµxν =
ρ2 + L2

R2
ηµν , gyiyj =

R2

ρ2 + L2
δij . (2.15)

Let us now assume that the worldvolume field strength F has non-zero entries only along

the directions of the yi coordinates and let us denote Fyiyj simply by Fij . Then, after using

1Notice that, with our notations, Fab is dimensionless and, therefore, the relation between Fab and

the gauge potential A is Fab = ∂aAb − ∂bAa + 1
2πα′ [Aa, Ab], whereas the gauge covariant derivative is

Da = ∂a + 1
2πα′

Aa.
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eq. (2.15) and the fact that the dilaton is trivial for the AdS5 × S5 background, the DBI

action (2.14) takes the form:

SD7
DBI = −T7

∫

d4x d4y Str

{

√

√

√

√det

(

δij +

(

ρ2 + L2

R2

)

Fij

) }

. (2.16)

The matrix appearing on the right-hand side of eq. (2.16) is a 4×4 matrix whose entries are

SU(Nf ) matrices. However, inside the symmetrized trace such matrices can be considered

as commutative numbers. Actually, we will evaluate the determinant in (2.16) by means

of the following identity. Let Mij = −Mji be a 4× 4 antisymmetric matrix. Then, one can

check that:

det( 1 + M ) = 1 +
1

2
M2 +

1

16
( ∗M M )2 , (2.17)

where M2 and ∗M M are defined as follows:

M2 ≡ Mij Mij , ∗M M ≡ ∗Mij Mij , (2.18)

and ∗M is defined as the following matrix:

∗Mij =
1

2
ǫijkl Mkl . (2.19)

When the Mij matrix is self-dual (i.e. when ∗M = M), the three terms on the right-hand

side of (2.17) build up a perfect square. Indeed, one can check by inspection that, in this

case, one has:

det( 1 + M )
∣

∣

∣

self−dual
=

(

1 +
1

4
M2

)2

. (2.20)

Let us apply these results to our problem. First of all, by using (2.17) one can rewrite

eq. (2.16) as:

SD7
DBI = −T7

∫

d4x d4y Str

{

√

√

√

√ 1 +
1

2

(

ρ2 + L2

R2

)2

F 2 +
1

16

(

ρ2 + L2

R2

)4
(

∗FF
)2

}

.

(2.21)

Let us now consider the Wess-Zumino(WZ) piece of the worldvolume action. For a

D7-brane in the AdS5 × S5 background this action reduces to:

SD7
WZ =

T7

2

∫

Str

[

P [C(4) ] ∧ F ∧ F

]

, (2.22)

where P [ · · · ] denotes the pullback of the form inside the brackets to the worldvolume of

the D7-brane. By using the same set of coordinates as in (2.16), and the explicit expression

of C(4) (see eq. (2.12)), one can rewrite SD7
WZ as:

SD7
WZ = T7

∫

d4x d4y Str

{

1

4

(

ρ2 + L2

R2

)2

∗FF

}

. (2.23)
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Let us now consider a configuration in which the worldvolume gauge field is self-dual

in the internal R
4 of the worldvolume spanned by the yi coordinates which, as one can

check, satisfies the equations of motion of the D7-brane probe. For such an instantonic

gauge configuration ∗F = F , where ∗F is defined as in eq. (2.19). As in eq. (2.20), when

F = ∗F the DBI action (2.21) contains the square root of a perfect square and we can

write:

SD7
DBI(self − dual) = −T7

∫

d4x d4y Str

{

1 +
1

4

(

ρ2 + L2

R2

)2

∗FF

}

. (2.24)

Moreover, by comparing eqs. (2.23) and (2.24) one readily realizes that the WZ action

cancels against the second term of the right-hand side of eq. (2.24). To be more explicit,

once we assume the instantonic character of F , the full action for a self-dual configuration

is just:

SD7(self − dual) = −T7

∫

d4x d4y Str [1] = −T7 Nf

∫

d4x d4y . (2.25)

Notice that in the total action (2.25) the transverse distance L does not appear. This

“no-force” condition is an explicit manifestation of the SUSY of the system. Indeed, the

fact that the DBI action is a square root of a perfect square is required for supersymmetry,

and actually can be regarded as the saturation of a BPS bound.

In order to get a proper interpretation of the role of the instantonic gauge field on the

D7-brane probe, let us recall that for self-dual configurations the integral of the Pontryagin

density P(y) is quantized for topological reasons. Actually, with our present normalization

of F , P(y) is given by:

P(y) ≡ 1

16π2

1

(2πα′)2
tr

[

∗FF
]

, (2.26)

and, if k ∈ Z is the instanton number, one has:
∫

d4y P(y) = k . (2.27)

A worldvolume gauge field satisfying (2.27) is inducing k units of D3-brane charge into the

D7-brane worldvolume along the subspace spanned by the Minkowski coordinates xµ. To

verify this fact, let us rewrite the WZ action (2.22) of the D7-brane as:

SD7
WZ =

T7

4

∫

d4x d4y C
(4)
x0x1x2x3 tr

[

∗FF
]

= T3

∫

d4x d4y C
(4)
x0x1x2x3 P(y) , (2.28)

where we have used (2.26) and the relation T3 = (2π)4 (α′)2 T7 between the tensions of the

D3- and D7-branes. If C
(4)
x0x1x2x3 does not depend on the coordinate y, we can integrate

over y by using eq. (2.27), namely:

SD7
WZ = k T3

∫

d4xC
(4)
x0x1x2x3 . (2.29)

Eq. (2.29) shows that the coupling of the D7-brane with k instantons in the worldvolume

to the RR potential C(4) of the background is identical to the one corresponding to k D3-

branes, as claimed above. It is worth to remark here that the existence of these instanton

configurations relies on the fact that we are considering Nf > 1 flavor D7 branes, i.e. that

we have a non-abelian worldvolume gauge theory.
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2.2 A microscopical interpretation of the D3-D7 intersection with flux

The fact that the D7-branes carry k dissolved D3-branes on them opens up the possibility

of a new perspective on the system, which could be regarded not just from the point of

view of the D7-branes with dissolved D3s, but also from the point of view of the dissolved

D3-branes which expand due to dielectric effect [25] to a transverse fuzzy R
4. To see this,

let us assume that we have a stack of k D3-branes in the background given by (2.13). These

D3-branes are extended along the four Minkowski coordinates xµ, whereas the transverse

coordinates ~y and ~z must be regarded as the matrix scalar fields Y i and Zj, taking values

in the adjoint representation of SU(k). Actually, we will assume in what follows that the

Zj scalars are abelian, as it corresponds to a configuration in which the D3-branes are

localized (i.e. not polarized) in the space transverse to the D7-brane.

The dynamics of a stack of coincident D3-branes is determined by the Myers dielectric

action [25], which is the sum of a Dirac-Born-Infeld and a Wess-Zumino part:

SD3 = SD3
DBI + SD3

WZ . (2.30)

For the background we are considering the Born-Infeld action is:

SD3
DBI = −T3

∫

d4ξ Str

[
√

− det

[

P [G + G(Q−1 − δ)G]ab

]

√

detQ

]

. (2.31)

In eq. (2.31) G is the background metric, Str(· · ·) represents the symmetrized trace over

the SU(k) indices and Q is a matrix which depends on the commutator of the transverse

scalars (see below). The Wess-Zumino term for the D3-brane in the AdS5×S5 background

under consideration is:

SD3
WZ = T3

∫

d4ξ Str

[

P [ C(4) ]

]

. (2.32)

As we are assuming that only the Y scalars are non-commutative, the only elements of the

matrix Q appearing in (2.31) that differ from those of the unit matrix are given by:

Qyiyj = δij +
i

2πα′
[Y i, Y k]Gykyj . (2.33)

By using the explicit form of the metric elements along the y coordinates (see eq. (2.13)),

one can rewrite Qij as:

Qyiyj = δij +
i

2πα′

R2

r̂ 2
[Y i , Y j ] , (2.34)

where r̂ 2 is the matrix:

r̂ 2 = (Y i )2 + Z2 . (2.35)

Let us now define the matrix θij as:

iθij ≡ 1

2πα′
[Y i, Y j ] . (2.36)
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It follows from this definition that θij is antisymmetric in the i, j indices and, as a matrix

of SU(k), is hermitian:

θij = −θji , θ†ij = θij . (2.37)

Moreover, in terms of θij, the matrix Qij can be written as:

Qyiyj = δij − R2

r̂ 2
θij . (2.38)

Using these definitions, we can write the DBI action (2.31) for the dielectric D3-brane in

the AdS5 × S5 background as:

SD3
DBI = −T3

∫

d4x Str

[

(

r̂ 2

R2

)2
√

det

(

δij − R2

r̂ 2
θij

)

]

, (2.39)

where we have chosen the Minkowski coordinates xµ as our set of worldvolume coordinates

for the dielectric D3-brane. Similarly, the WZ term can be written as:

SD3
WZ = T3

∫

d4x Str

[(

r̂ 2

R2

)2 ]

. (2.40)

Let us now assume that the matrices θij are self-dual with respect to the ij indices, i.e.

that ∗θ = θ. Notice that, in terms of the original matrices Y i, this is equivalent to the

condition:

[Y i, Y j] =
1

2
ǫijkl[Y

k, Y l] . (2.41)

Moreover, the self-duality condition implies that there are three independent θij matrices,

namely:

θ12 = θ34 , θ13 = θ42 , θ14 = θ23 . (2.42)

The description of the D3-D7 system from the perspective of the color D3-branes should

match the field theory analysis performed at the beginning of this section. In particular,

the D- and F-flatness conditions of the adjoint fields in the Coulomb-Higgs phase of the

N = 2 SYM with flavor should be the same as the ones satisfied by the transverse scalars

of the dielectric D3-brane. In order to check this fact, let us define the following complex

combinations of the Y i matrices:

2πα′ Φ1 ≡ Y 1 + iY 2

√
2

, 2πα′ Φ2 ≡ Y 3 + iY 4

√
2

, (2.43)

where we have introduced the factor 2πα′ to take into account the standard relation between

coordinates and scalar fields in string theory. We are going to identify Φ1 and Φ2 with

the adjoint scalars of the field theory side. To verify this identification, let us compute

the commutators of these matrices and, as it was done in [31], let us match them with

the ones obtained from the F-flatness conditions of the field theory analysis. From the

definitions (2.36) and (2.43) and the self-duality condition (2.42), it is straightforward to

check that:

[ Φ1 ,Φ2 ] = − θ23

2πα′
+ i

θ13

2πα′
,

[ Φ1 ,Φ†
1 ] = [Φ2 ,Φ†

2 ] =
θ12

2πα′
. (2.44)
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By comparing with the results of the field theory analysis (eqs. (2.9) and (2.10)), we get the

following identifications between the θ’s and the vacuum expectation values of the matter

fields:

qiq̃i =
θ23

2πα′
− i

θ13

2πα′
, |q̃i|2 − |qi|2 =

θ12

πα′
. (2.45)

Moreover, from the point of view of this dielectric description, the Φ3 field in the field

theory is proportional to Z1 + iZ2. Since the stack of branes is localized in that directions,

Z1 and Z2 are abelian and clearly we have that [Φ1,Φ3] = [Φ2,Φ3] = 0, thus matching the

last F -flatness condition for the adjoint field Φ3.

It is also interesting to relate the present “microscopic” description of the D3-D7

intersection, in terms of a stack of dielectric D3-branes, to the “macroscopic” description

of subsection 2.1, in terms of the flavor D7-branes. With this purpose in mind, let us

compare the actions of the D3- and D7-branes. First of all, we notice that, when the

matrix θ is self-dual, we can use eq. (2.20) and write the DBI action (2.39) as:

SD3
DBI(self − dual) = −T3

∫

d4x Str

[(

r̂ 2

R2

)2

+
1

4
θ2

]

. (2.46)

Moreover, by inspecting eqs. (2.40) and (2.46) we discover that the WZ action cancels

against the first term of the right-hand side of (2.46), in complete analogy to what happens

to the D7-brane. Thus, one has:

SD3(self − dual) = − T3

4

∫

d4xStr [ θ2 ] = −π2 T7 ( 2πα′ )2
∫

d4xStr [ θ2 ] , (2.47)

where, in the last step, we have rewritten the result in terms of the tension of the D7-

brane. Moreover, an important piece of information is obtained by comparing the WZ

terms of the D7- and D3-branes (eqs. (2.28) and (2.40)). Actually, from this comparison

we can establish a map between matrices in the D3-brane description and functions of the

y coordinates in the D7-brane approach. Indeed, let us suppose that f̂ is a k × k matrix

and let us call f(y) the function to which f̂ is mapped. It follows from the identification

between the D3- and D7-brane WZ actions that the mapping rule is:

Str[ f̂ ] ⇒
∫

d4yP(y) f(y) , (2.48)

where the kernel P(y) on the right-hand side of (2.48) is the Pontryagin density defined

in eq. (2.26). Actually, the comparison between both WZ actions tells us that the matrix

r̂2 is mapped to the function ~y 2 + ~z 2. Notice also that, when f̂ is the unit k × k matrix

and f(y) = 1, both sides of (2.48) are equal to the instanton number k (see eq. (2.27)).

Another interesting information comes by comparing the complete actions of the D3- and

D7-branes. It is clear from (2.47) and (2.25) that:

( 2πα′ )2 Str[ θ2 ] ⇒
∫

d4y
Nf

π2
. (2.49)

By comparing eq. (2.49) with the general relation (2.48), one gets the function that corre-

sponds to the matrix θ2, namely:

( 2πα′ )2 θ2 ⇒ Nf

π2 P(y)
. (2.50)
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Notice that θ2 is a measure of the non-commutativity of the adjoint scalars in the dielectric

approach, i.e. is a quantity that characterizes the fuzziness of the space transverse to the D3-

branes. Eq. (2.50) is telling us that this fuzziness is related to the (inverse of the) Pontryagin

density for the macroscopic D7-branes. Actually, this identification is reminiscent of the

one found in ref. [38] between the non-commutative parameter and the NSNS B-field in

the string theory realization of non-commutative geometry. Interestingly, in our case the

commutator matrix θ is related to the VEV of the matter fields q and q̃ through the F-

and D-flatness conditions (2.9) and (2.10). Notice that eq. (2.50) implies that the quark

VEV is somehow related to the instanton density on the flavor brane. In order to make

this correspondence more precise, let us consider the one-instanton configuration of the

Nf = 2 gauge theory on the D7-brane worldvolume. In the so-called singular gauge, the

SU(2) gauge field is given by:

Ai

2πα′
= 2iΛ2 σ̄ij yj

ρ2(ρ2 + Λ2)
, (2.51)

where ρ2 = ~y · ~y, Λ is a constant (the instanton size) and the matrices σ̄ij are defined as:

σ̄ij =
1

4
( σ̄i σj − σ̄j σi ) , σi = (i~τ , 12×2 ) , σ̄i = σ†

i = (−i~τ , 12×2 ) . (2.52)

In (2.52) the ~τ ’s are the Pauli matrices. Notice that we are using a convention in which

the SU(2) generators are hermitian as a consequence of the relation σ̄†
ij = −σ̄ij. The

non-abelian field strength Fij for the gauge potential Ai in (2.51) can be easily computed,

with the result:

Fij

2πα′
= − 4iΛ2

( ρ2 + Λ2)2
σ̄ij − 8iΛ2

ρ2 ( ρ2 + Λ2)2
( yi σ̄jk − yj σ̄ik ) yk . (2.53)

Using the fact that the matrices σ̄ij are anti self-dual one readily verifies that Fij is self-dual.

Moreover, one can prove that:

Fij Fij

( 2πα′ )2
=

48Λ4

( ρ2 + Λ2)4
, (2.54)

which gives rise to the following instanton density:

P(y) =
6

π2

Λ4

( ρ2 + Λ2 )4
. (2.55)

As a check one can verify that eq. (2.27) is satisfied with k = 1.

Let us now use this result in (2.50) to get some qualitative understanding of the relation

between the Higgs mechanism in field theory and the instanton density in its holographic

description. For simplicity we will assume that all quark VEVs are proportional to some

scale v, i.e. that:

q, q̃ ∼ v . (2.56)

Then, it follows from (2.45) that:

θ ∼ α′ v2 , (2.57)
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and, by plugging this result in (2.50) one arrives at the interesting relation:

v ∼ ρ2 + Λ2

α′Λ
. (2.58)

Eq. (2.58) should be understood in the holographic sense, i.e. ρ should be regarded as the

energy scale of the gauge theory. Actually, in the far IR (ρ ≈ 0) the relation (2.58) reduces

to:

v ∼ Λ

α′
, (2.59)

which, up to numerical factors, is precisely the relation between the quark VEV and the

instanton size that has been obtained in [26]. Let us now consider the full expression (2.58)

for v. For any finite non-zero ρ the quark VEV v is non-zero. Indeed, in both the large and

small instanton limits v goes to infinity. However, in the far IR a subtlety arises, since there

the quark VEV goes to zero in the small instanton limit. This region should be clearly

singular, because a zero quark VEV would mean to unhiggs the theory, which would lead

to the appearance of extra light degrees of freedom.

To finish this subsection, let us notice that the dielectric effect considered here is not

triggered by the influence of any external field other than the metric background. In this

sense it is an example of a purely gravitational dielectric effect, as in [39].

2.3 Fluctuations in Dp-D(p+4) with flux

So far we have seen how we can explicitly map the Higgs phase of the field theory to

the instanton moduli space in the D7-brane picture through the dielectric description.

In this section we will concentrate on the macroscopical description and we will consider

fluctuations around the instanton configuration. These fluctuations should correspond to

mesons in the dual field theory.

Since we have a similar situation for all the Dp-D(p+4) intersections, namely a one

to one correspondence between the Higgs phase of the corresponding field theory and the

moduli space of instantons in 4 dimensions, in this section we will work with the general

Dp-D(p+4) system. Both the macroscopic and the microscopic analysis of the previous

section can be extended in a straightforward manner to the general case, so we will briefly

sketch the macroscopical computation to set notations, and concentrate on the fluctuations.

In general, the metric corresponding to a stack of N Dp-branes in string frame is given by:

ds2 =

(

r2

R2

)α

dx2
1,p +

(

R2

r2

)α

d~r 2 , α =
7 − p

4
, (2.60)

where ~r is a (9 − p)-dimensional vector and R is given by:

R7−p = 25−p π
5−p
2 Γ

(7 − p

2

)

gs N (α′)
7−p
2 . (2.61)

In addition, the type II background generated by the Dp-branes is endowed with a non-zero

dilaton given by:

e−Φ =

(

R2

r2

)γ

, γ =
(7 − p)(p − 3)

8
, (2.62)
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and there is also a RR (p + 1)-form potential, whose expression is:

C(p+1) =

(

r2

R2

)2α

dx0 ∧ · · · ∧ dxp , (2.63)

where α is the same as in eq. (2.60). We will separate again the ~r coordinates in two

sets, namely ~r = (~y, ~z), where ~y has four components, and we will denote ρ2 = ~y · ~y. As

r2 = ρ2 + ~z 2, the metric (2.60) can be written as:

ds2 =

(

ρ2 + ~z 2

R2

)α

dx2
1,p +

(

R2

ρ2 + ~z 2

)α

(d~y 2 + d~z 2) . (2.64)

In this background we will consider a stack of Nf D(p+4)-branes extended along (xµ, ~y) at

fixed distance L in the transverse space spanned by the ~z coordinates (i.e. with | ~z | = L).

If ξa = (xµ, ~y) are the worldvolume coordinates, the action of a probe D(p+4)-brane is:

SD(p+4) = −Tp+4

∫

dp+5ξ e−φ Str

{

√

− det ( g + F )

}

+

+
Tp+4

2

∫

Str

{

P

(

C(p+1)

)

∧ F ∧ F

}

, (2.65)

where g is the induced metric and F is the SU(Nf ) worldvolume gauge field strength. In

order to write g more compactly, let us define the function h as follows:

h(ρ) ≡
(

R2

ρ2 + L2

)α

. (2.66)

Then, one can write the non-vanishing elements of the induced metric as:

gxµ xν =
ηµν

h
, gyi yj = h δij . (2.67)

Let us now assume that the only non-vanishing components of the worldvolume gauge field

F are those along the yi coordinates. Following the same steps as in subsection 2.1, the

action for the D(p+4)-brane probe can be written as:

SD(p+4) = −Tp+4

∫

d4x d4y Str

{

√

√

√

√1+
1

2

(

ρ2+L2

R2

)2α

F 2+
1

16

(

ρ2+L2

R2

)4α
(

∗FF
)2

−1

4

(

ρ2+L2

R2

)2α

∗FF

}

, (2.68)

where F 2 and ∗FF are defined as in eqs. (2.18) and (2.19). If, in addition, Fij is self-dual,

one can check that the equations of motion of the gauge field are satisfied and, actually,

there is a cancellation between the DBI and WZ parts of the action (2.68) generaliz-

ing (2.25), namely:

SD(p+4)(self − dual) = −Tp+4

∫

Str[1] = −Nf Tp+4

∫

dp+1x

∫

d4y . (2.69)
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We turn now to the analysis of the fluctuations around the self-dual configuration

and the computation of the corresponding meson spectrum for this fluxed Dp-D(p+4)

intersection. We will not compute the whole set of excitations. Instead, we will focus on

the fluctuations of the worldvolume gauge field, for which we will write:

A = Ainst + a , (2.70)

where Ainst is the gauge potential corresponding to a self-dual gauge field strength F inst

and a is the fluctuation. The total field strength F reads:

Fab = F inst
ab + fab , (2.71)

with fab being given by:

fab = ∂aab − ∂baa +
1

2πα′
[Ainst

a , ab] +
1

2πα′
[aa, A

inst
b ] +

1

2πα′
[aa, ab] , (2.72)

where the indices a, b run now over all the worldvolume directions. Next, let us expand

the action (2.65) in powers of the field a up to second order. With this purpose in mind,

we rewrite the square root in the DBI action as:
√

− det ( g + F inst + f ) =
√

− det ( g + F inst )
√

det ( 1 + X ) , (2.73)

where X is the matrix:

X ≡
(

g + F inst
)−1

f . (2.74)

We will expand the right-hand side of (2.73) in powers of X by using the equation2:

√

det (1 + X) = 1 +
1

2
Tr X − 1

4
TrX2 +

1

8
(TrX)2 + o(X3) . (2.75)

To apply this expansion to our problem we need to know previously the value of X, which

has been defined in eq. (2.74). Let us denote by G and J to the symmetric and antisym-

metric part of the inverse of g + F inst, i.e.:

(

g + F inst
)−1

= G + J . (2.76)

One can easily compute the matrix elements of G, with the result:

Gµν = h ηµν , Gij =
h

H
δij , (2.77)

where h has been defined in (2.66) and the function H is given by:

H ≡ h2 +
1

4

(

F inst
)2

. (2.78)

Moreover, the non-vanishing elements of J are:

J ij = −
F inst

ij

H
. (2.79)

2The trace used in eqs. (2.75) and (2.80) should not be confused with the trace over the SU(Nf ) indices.
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Using these results one can easily obtain the expression of X and the traces of its powers

appearing on the right-hand side of (2.75), which are given by:

Tr X =
1

H
F inst

ij fij , (2.80)

Tr X2 = −h2 fµν fµν − 2h2

H
fiµ f iµ − h2

H2
fij f ij +

1

H2
F inst

ij F inst
kl f jk f li .

By using these results we get, after a straightforward computation, the action up to

quadratic order in the fluctuations, namely:

SD(p+4) = −Tp+4

∫

Str

{

1 +
H

4
fµνf

µν +
1

2
fiµf iµ +

1

4H
fijf

ij + (2.81)

+
1

8h2H
(F ijfij)

2 − 1

4h2H
F ijF klfjkfli − 1

8h2
fijfklǫ

ijkl

}

,

where we are dropping the superscript in the instanton field strenght.

From now on we will assume again that Nf = 2 and that the unperturbed config-

uration is the one-instanton SU(2) gauge field written in eq. (2.51). As in ref. [26], we

will concentrate on the subset of fluctuations for which ai = 0, i.e. on those for which

the fluctuation field a has non-vanishing components only along the Minkowski directions.

However, we should impose this ansatz at the level of the equations of motion in order to

ensure the consistency of the truncation. Let us consider first the equation of motion for

ai, which after imposing ai = 0 reduces to:

Di ∂
µ aµ = 0 . (2.82)

Moreover, the equation for aµ when ai = 0 becomes:

H Dµ fµν + Di fiν = 0 , (2.83)

where now H is given in (2.78), with ( F inst )2 as in (2.54). Eq. (2.82) is solved by requiring:

∂µ aµ = 0 . (2.84)

Using this result, eq. (2.83) can be written as:

H ∂µ∂µ aν + ∂i∂i aν + ∂i
[ Ai

2πα′
, aν

]

+
[ Ai

2πα′
, ∂iaν

]

+
[ Ai

2πα′
,
[ Ai

2πα′
, aν

]]

= 0 . (2.85)

Let us now adopt the following ansatz for aµ:

a(l)
µ = ξµ(k) f(ρ) eikµxµ

τ l , (2.86)

where τ l is a Pauli matrix. This ansatz solves eq. (2.84) provided the following transver-

sality condition is fulfilled:

kµ ξµ = 0 . (2.87)
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Moreover, one can check that, for this ansatz, one has:

∂i [ Ai , a(l)
ν ] = [ Ai , ∂ia

(l)
ν ] = 0 ,

[ Ai

2πα′
,
[ Ai

2πα′
, a(l)

ν

]]

= − 8Λ4

ρ2(ρ2 + Λ2)2
ξν(k) f(ρ) eikµxµ

τ l . (2.88)

Let us now use these results in eq. (2.85). Denoting M2 = −k2 (which will be identified

with the mass of the meson in the dual field theory) and using eq. (2.54) to compute

the function H (see eq. (2.78)), one readily reduces (2.85) to the following second-order

differential equation for the function f(ρ) of the ansatz (2.86):
[

R4αM2

(ρ2 + L2)2α

(

1+
12(2πα′)2Λ4

R4α

(ρ2 + L2)2α

(ρ2 + Λ2)4

)

− 8Λ4

ρ2(y2 + Λ2)2
+

1

ρ3
∂ρ(ρ

3∂ρ)

]

f = 0 . (2.89)

In order to analyze eq. (2.89), let us introduce a new radial variable ̺ and a reduced mass

M̄ , which are related to ρ and M as:

ρ = L̺ , M̄2 = R7−pLp−5M2 . (2.90)

Moreover, it is interesting to rewrite the fluctuation equation in terms of field theory

quantities. Accordingly, let us introduce the quark mass mq and its VEV v as follows:

mq =
L

2πα′
, v =

Λ

2πα′
. (2.91)

Notice that the relation between v and the instanton size Λ is consistent with our analysis

of subsection 2.2 (see eq. (2.59)) and with the proposal of ref. [26]. On the other hand, the

Yang-Mills coupling gYM is given by:

g2
YM = (2π)p−2 (α′)

p−3
2 gs , (2.92)

and the effective dimensionless coupling geff(U) at the energy scale U is [40]:

g2
eff(U) = g2

YM N Up−3 . (2.93)

It is now straightforward to use these definitions to rewrite eq. (2.89) as:

[

M̄2

(1 + ̺2)2α

(

1 + cp(v,mq)
(1 + ̺2)2α

(̺2 + ( v
mq

)2)4

)

−
(

v

mq

)4
8

̺2(̺2 + ( v
mq

)2)2
(2.94)

+
1

̺3
∂̺(̺

3∂̺)

]

f = 0 ,

where cp(v,mq) is defined as:

cp(v,mq) ≡ 12 · 2p−2π
p+1
2

Γ(7−p
2 )

v4

g2
eff (mq) m4

q

. (2.95)

Notice that everything conspires to absorb the powers of α′ and give rise to the effective

coupling at the quark mass in cp(v,mq).
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The equation (2.94) differs in the M̄ term from the one obtained in [26], where the

term proportional to cp(v,mq) is absent. We would like to point out that in order to

arrive to (2.94) we expanded up to quadratic order in the fluctuations and we have kept

all orders in the instanton field. The extra factor compared to that in ([26]) comes from

the fact that, for a self-dual worldvolume gauge field, the unperturbed DBI action actually

contains the square root of a perfect square, which can be evaluated exactly and shows

up in the lagrangian of the fluctuations. This extra term is proportional to the inverse

of the effective Yang-Mills coupling. In order to trust the supergravity approximation the

effective Yang-Mills coupling should be large, which would suggest that the effect of this

term is indeed negligible. We will see however that in the region of small v
mq

the full term

is actually dominating in the IR region and determines the meson spectrum. In addition,

in order to ensure the validity of the DBI approximation, we should have slowly varying

gauge fields, which further imposes that F ∧ F should be much smaller than α′.

In order to study the fluctuation equation (2.94) it is interesting to notice that, after

a change of variable, (2.94) can be converted into a Schrödinger equation. Indeed, let us

change from ̺ and f to the new variables z and ψ, defined as:

ez = ̺ , ψ = ̺ f . (2.96)

Notice that ̺ → ∞ corresponds to z → +∞, while ̺ = 0 is mapped to z = −∞. Moreover,

one can readily prove that, in terms of z and ψ, eq. (2.94) can be recast as:

∂2
z ψ − V (z)ψ = 0 , (2.97)

where the potential V (z) is given by:

V (z) = 1 +

(

v

mq

)4
8

(

e2z + ( v
mq

)2
)2

−M̄2 e2z

(

e2z + 1
)

7−p
2

[

1 + cp(v,mq)
( e2z + 1

)
7−p
2

(

e2z + ( v
mq

)2
)4

]

. (2.98)

Notice that the reduced mass M̄ is just a parameter in V (z). Actually, in these new

variables the problem of finding the mass spectrum can be rephrased as that of finding

the values of M̄ that allow a zero-energy level for the potential (2.98). By using the

standard techniques in quantum mechanics one can convince oneself that such solutions

exist. Indeed, the potential (2.98) is strictly positive for z → ±∞ and has some minima

for finite values of z. The actual calculation of the mass spectra must be done by means of

numerical techniques. A key ingredient in this approach is the knowledge of the asymptotic

behaviour of the solution when ̺ → 0 and ̺ → ∞. This behaviour can be easily obtained

from the form of the potential V (z) in (2.98). Indeed, for ̺ → ∞, or equivalently for

z → +∞, the potential V (z) → 1, and the solutions of (2.97) behave as ψ ∼ e±z which, in

terms of the original variables, corresponds to f = constant, ̺−2. Similarly for ̺ → 0 (or

– 19 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
4

5 10 15

20

40

60

M
2

5 10 15 20

10

20

30

40

M
2

D2-D6 D3-D7

v
mq

v
mq

Figure 1: In this figure we plot the numerical masses for the first level as a function of the

instanton size for both the full equation (with stars) and for the equation obtained in [26] (with

solid triangles). The quark mass mq is such that geff(mq) = 1. The solid line corresponds to the

WKB prediction (2.107) for small v. The plot on the left (right) corresponds to the D2-D6 (D3-D7)

intersection.

z → −∞) one gets that f = ̺2, ̺−4. Thus, the IR and UV behaviours of the fluctuation

are:

f(̺) ≈ a1 ̺2 + a2 ̺−4 , (̺ → 0) ,

f(̺) ≈ b1 ̺−2 + b2 , (̺ → ∞) . (2.99)

The normalizable solutions are those that are regular at ̺ ≈ 0 and decrease at ̺ ≈ ∞.

Thus they correspond to having a2 = b2 = 0 in (2.99). Upon applying a shooting technique,

we can determine the values of M̄ for which such normalizable solutions exist. Notice that

M̄ depends parametrically on the quark mass mq and on its VEV v. In general, for given

values of mq and v, one gets a tower of discrete values of M̄ . In figure 1 we have plotted the

values of the reduced mass for the first level, as a function of the quark VEV. For illustrative

purposes we have included the values obtained with the fluctuation equation of ref. [26].

As anticipated above, both results differ significantly in the region of small v and coincide

when v → ∞. Actually, when v is very large we recover the spectral flow phenomenon

described in [26], i.e. M̄ becomes independent of the instanton size and equals the mass

corresponding to a higher Kaluza-Klein mode on the worldvolume sphere. However, we

see that when v
mq

goes to zero, the masses of the associated fluctuations also go to zero.

Actually, this limit is pretty singular. Indeed, it corresponds to the small instanton limit,

where it is expected that the moduli space of instantons becomes effectively non-compact

and that extra massless degrees of freedom show up in the spectrum.

It turns out that the mass levels for small v are nicely represented analytically by

means of the WKB approximation for the Schrödinger problem (2.97). The WKB method

has been very successful [41, 42] in the calculation of the glueball mass spectra in the

gauge/gravity correspondence and also provides rather reliable predictions for the mass
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levels of the mesons [20]. The WKB quantization rule is:

(

n +
1

2

)

π =

∫ z2

z1

dz
√

−V (z) , n ≥ 0 , (2.100)

where n ∈ Z and z1 and z2 are the turning points of the potential (V (z1) = V (z2) = 0).

Following straightforwardly the steps of refs. [42, 20], we obtain the following expression

for the WKB values of M̄ :

M̄2
WKB =

π2

ζ2
(n + 1)

(

n + 3 +
2

5 − p

)

, (2.101)

where ζ is the following integral:

ζ =

∫ +∞

0
d̺

√

√

√

√

1

(1 + ̺2)
7−p
2

+
cp(v,mq)

[

( v
mq

)2 + ̺2
]4 . (2.102)

Let us evaluate analytically ζ when v is small. First of all, as can be easily checked, we

notice that, when v is small, the second term under the square root in (2.102) behaves as:

1
[

( v
mq

)2 + ̺2
]2 ≈ π

2

(

mq

v

)3

δ(̺) , as v → 0 . (2.103)

Then, one can see that this term dominates the integral defining ζ around ̺ ≈ 0 and, for

small v, one can approximate ζ as:

ζ ≈
√

cp(v,mq)

2

∫ ǫ

−ǫ

d̺
[

( v
mq

)2 + ̺2
]2 +

∫ +∞

0

d̺

(1 + ̺2)
7−p
4

, (2.104)

where ǫ is a small positive number and we have used the fact that the function in (2.102)

is an even function of ̺. Using (2.103), one can evaluate ζ as:

ζ ≈ π

4

(

mq

v

)3 √

cp(v,mq) +

√
π

2

Γ
(

5−p
4

)

Γ
(

7−p
4

) . (2.105)

Clearly, for v → 0, we can neglect the last term in (2.105). Using the expression of cp(v,mq)

(eq. (2.95)), we arrive at:

ζ ≈
√

3 · 2p−4
2 π

p+5
4

√

Γ
(

7−p
2

)

mq

geff(mq) v
, (2.106)

and plugging this result in (2.101), we get the WKB mass of the ground state (n = 0) for

small v:

M̄2
WKB ≈

(17 − 3p) Γ
(

5−p
2

)

3 · 2p−3 π
p+1
2

(

geff(mq) v

mq

)2

. (2.107)
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Thus, we predict that M̄2 is a quadratic function of v/mq with the particular coefficient

given on the right-hand side of (2.107). In figure 1 we have represented by a solid line the

value of M̄ obtained from eq. (2.107). We notice that, for small v, this equation nicely fits

the values obtained by the numerical calculation.

Let us now study the dependence of the mass gap as a function of the quark mass mq

and the quark VEV v. First of all, we notice that the relation between the reduced mass

M̄ and the mass M can be rewritten in terms of the quark mass mq and the dimensionless

coupling constant geff(mq) as:

M ∝ mq

geff(mq)
M̄ . (2.108)

For large v the reduced mass M̄ tends to a value independent of both mq and v. Thus, the

meson mass M depends only on mq in a holographic way, namely:

M ∼ mq

geff (mq)
, (v → ∞) . (2.109)

Notice that this dependence on mq and v is exactly the same as in the unbroken symmetry

case, although the numerical coefficient is different from that found in [20, 21]. On the

contrary, for small v, after combining eq. (2.108) with the WKB result (2.107), we get that

the mass gap depends linearly on v and is independent on the quark mass mq:

M ∼ v , (v → 0) , (2.110)

and, in particular, the mass gap disappears in the limit v → 0, which corresponds to having

a zero size instanton.

3. The codimension one defect

In this section we will consider the intersection of Dp- and D(p+2)-branes according to the

array:

1 · · · p − 1 p p + 1 p + 2 p + 3 · · · 9

Dp : × · · · × × · · ·
D(p + 2) : × · · · × × × × · · ·

(3.1)

It is easy to verify, by using the standard intersection rules of the type II theories, that

this Dp-D(p+2) intersection is supersymmetric. Moreover, it is clear from (3.1) that the

D(p+2)-brane is an object of codimension one along the gauge theory directions of the Dp-

brane worldvolume. Indeed, for p = 3 the configuration (3.1) was studied in [3] and shown

to be dual to a defect theory in which N = 4, d = 4 super Yang-Mills theory in the bulk

is coupled to N = 4, d = 3 fundamental hypermultiplets localized at the defect [32, 43],

which is located at a fixed value of the coordinate p in (3.1). These hypermultiplets are

generated by open strings connecting the two types of D-branes. If we allow a non-zero

distance in the p+4, · · · , 9 directions of the two stacks in (3.1), the hypermultiplets become

massive and a mass gap is introduced in the theory. The corresponding meson spectrum

was computed in the probe approximation in ref. [20].
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The analysis of the Higgs phase of the codimension one defect associated to the ar-

ray (3.1) has been worked out recently in [31] for the particular case of a 2+1 dimensional

defect living in a bulk N = 4, d = 4 theory, which corresponds to the intersection dis-

played in (3.1) for p = 3. In that reference it is argued that the gravity dual description

of the Higgs phase of the theory with N = 2 fundamental hypermultiplets confined to

a codimension one defect is in terms of probe D5-branes in the near horizon of the D3-

brane geometry, once we switch on appropriately a magnetic worldvolume gauge field. As

in the case of the codimension zero defect, this worldvolume gauge field has the effect of

introducing extra D3-brane charge in the D5-brane worldvolume, which in turn can be

seen as the macroscopical description of dielectrically expanded D3-branes. However, the

addition of the magnetic field requires a non-trivial bending of the D5-branes, which now

recombine with the D3’s rather than intersecting them. This bending takes place along the

direction 3 in (3.1) for p = 3. As in the previous section, the F - and D-flatness conditions

arise naturally as the vacuum conditions for the dielectric branes, thus providing a map

between the Higgs phase of these theories and the monopoles in the sphere to which the

branes expand. The required bending then appears naturally as the solution to these F -

and D-flatness conditions.

We will refer to [31] for the field theory analysis, which can be extended in a straight-

forward manner to any dimension. Instead, in this paper we will focus on the gravity dual

for the general case, which will be in terms of a probe D(p+2)-brane in the Dp-brane back-

ground given by (2.60), (2.62) and (2.63). Let us go to a new coordinate system, in which

we write the transverse space to the Dp-brane spanned by ~r in a more suitable manner,

such that the metric (2.60) takes the form:

ds2 =

(

r2

R2

)α

dx2
1,p +

(

R2

r2

)α
(

dρ2 + ρ2dΩ2
2 + d~z 2

)

, (3.2)

where dΩ2
2 = dθ2 + sin2 θdϕ2 is the line element of a unit two-sphere and the coordinates

(ρ, θ, ϕ) parametrize the directions p + 1, p + 2 and p + 3 in (3.1). The exponent α in (3.2)

is the same as in (2.60) and r2 = ρ2 + ~z 2.

We shall now consider a D(p+2)-brane probe in this background. Its action is:

SD(p+2) = −Tp+2

∫

dp+3ξ e−φ
√

− det(g + F ) + Tp+2

∫

P [C(p+1) ] ∧ F . (3.3)

In what follows we will take ξa = (x0, x1 · · · , xp−1, ρ, θ, ϕ) as worldvolume coordinates.

Moreover, we will assume that there exists a constant separation on the transverse space,

~z 2 = L2, which gives mass to the quarks, and we will switch on a magnetic worldvolume

field on the internal S2 given by:

F = q Vol (S2) ≡ F , (3.4)

where q is a constant and Vol (S2) = sin θdθdϕ. As anticipated above, in order to solve

the equations of motion of the probe, we have to consider a non-trivial transverse xp field
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xp = x(ρ). Moreover, since nothing depends on the internal S2, upon integration over this

compact manifold, it is straightforward to see that the action reads:

SD(p+2) = −4πTp+2

∫

dpx dρ

{

ρ2

√

√

√

√1+

(

ρ2+L2

R2

)2α

x′2

√

√

√

√1+

(

ρ2+L2

R2

)2α
q2

ρ4
(3.5)

− q

(

ρ2 + L2

R2

)2α

x′

}

.

One can check that the Euler-Lagrange equation for x(ρ) derived from (3.5) is solved if

one requires that:

x′(ρ) =
q

ρ2
, (3.6)

which can be immediately integrated, giving rise to the following profile of the transverse

scalar:

x(ρ) = x0 − q

ρ
≡ X (ρ) . (3.7)

For this configuration, the two square roots in (3.5) become equal and there is a cancellation

between the WZ and (part of) the DBI term. Then, the energy for such a brane, which is

nothing but minus the lagrangian since our configuration is static, reduces to:

E = 4πTp+2

∫

ρ2 , (3.8)

where, as in the Dp-D(p+4) case, the distance L does not explicitly appear, displaying the

supersymmetry properties of the configuration. Indeed, one can verify as in [33] that the

condition (3.6) is a BPS equation that can be derived from kappa symmetry of the probe

and that the energy (3.8) saturates a BPS bound.

Let us remind the reader that the existence of the bending (3.7) was a key ingredient

in the analysis of [31], where it was shown, for the particular case of p = 3, that it has

the effect of spreading the defect over the whole bulk which, in turn, led to the loss of the

discrete spectrum. We shall see that, indeed, the same situation occurs in the more general

case considered here.

3.1 Microscopical description of the Dp-D(p+2) intersection with flux

The flux of the worldvolume gauge field F of eq. (3.4) on the internal S2 has the non-trivial

effect of inducing Dp-brane charge in the D(p+2)-brane worldvolume. To verify this fact,

let us point out that F is constrained by a flux quantization condition [44] which, with our

notations, reads:
∫

S2

F =
2πk

Tf
, k ∈ Z , Tf =

1

2πα′
. (3.9)

By plugging the expression of F given in (3.4) on the quantization condition (3.9), one

immediately concludes that the constant q is restricted to be of the form:

q = kπα′ , (3.10)
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where k is an integer. In order to interpret the meaning of k, let us notice that in the WZ

piece of the action for the D(p+2)-brane we have the coupling:

Tp+2

∫

P [Cp+1] ∧ F . (3.11)

Upon using the explicit form of F to integrate it over the two-sphere and the relation

Tp+2 (2π)2 α′ = Tp we have that this coupling reads:

k Tp

∫

P [Cp+1] , (3.12)

where now the integration is over p + 1 variables. Thus, we see that F is inducing k units

of Dp-brane charge in the worldvolume of the D(p+2)-brane. This charge is located along

the {x0, · · · , xp−1, ρ} directions. This suggests an alternative interpretation of the system

in terms of dielectric Dp-branes that polarize to a D(p+2)-brane, as anticipated in [31]. To

be more explicit, let us consider a stack of k coincident Dp-branes in the background (3.2).

The dynamics of such a stack is governed by the Myers action [25], which is given by the

straightforward generalization of eqs. (2.31) and (2.32) to a Dp-brane. We will choose

(x0, · · · , xp−1, ρ) as worldvolume coordinates and we shall consider the other coordinates in

the metric (3.2) as scalar fields which, in general, are non-commutative. Moreover, we shall

introduce new coordinates Y I(I = 1, 2, 3) for the two-sphere of the metric (3.2). These

new coordinates satisfy
∑

I Y I Y I = 1 and the line element dΩ2
2 is given by:

dΩ2
2 =

∑

I

dY I dY I ,
∑

I

Y I Y I = 1 . (3.13)

We will assume that the Y ’s are the only non-commutative scalars and that they are

represented by k × k matrices. Furthermore, we shall adopt the ansatz in which they are

given by:

Y I =
JI

√

C2(k)
, (3.14)

where the k × k matrices JI correspond to the k-dimensional irreducible representation of

the SU(2) algebra:

[JI , JJ ] = 2iǫIJK JK , (3.15)

and C2(k) = k2 − 1 is the corresponding quadratic Casimir. Clearly the Y ’s parametrize a

fuzzy two-sphere. Let us, in addition, assume that we consider embeddings of the Dp-brane

in which the scalars ~z and xp are commutative and such that |~z | = L and xp = x(ρ). With

these assumptions it is easy to evaluate the dielectric action for the Dp-brane in the large

k limit, following the same steps as those followed in ref. [31] for the D3-D5 system. The

final result exactly coincides with the macroscopical action (3.5), once q is related to the

integer k as in the quantization condition (3.10). This matching is a confirmation of our

interpretation of the D(p+2)-brane configuration with flux as a bound state of a stack of

coincident Dp-branes. Once again we see that the expansion to the dielectric configuration

is not caused by any other field apart from the metric background, thus constituting another

example of purely gravitational dielectric effect ([39]).
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3.2 Fluctuations in Dp-D(p+2) with flux

Let us now study the fluctuations around the Dp-D(p+2) intersection with flux described

above. Without loss of generality we can take the unperturbed configuration as z1 = L,

zm = 0 (m > 1). Next, let us consider a fluctuation of the type:

z1 = L + χ1 , zm = χm , (m = 2, · · · , 6 − p) ,

xp = X + x , F = F + f , (3.16)

where the bending X and the worldvolume gauge field F are given by eqs. (3.7) and (3.4)

respectively and we assume that χm, x and f are small. The induced metric on the

D(p+2)-brane worldvolume can be written as:

g = G + g(f) , (3.17)

with G being the induced metric of the unperturbed configuration:

Gab dξa dξb = h−1 dx2
1,p−1 + h

[(

1 +
q2

ρ4h2

)

dρ2 + ρ2 dΩ2
2

]

, (3.18)

where h = h(ρ) is the function defined in (2.66). Moreover, g(f) is the part of g that

depends on the derivatives of the fluctuations, namely:

g
(f)
ab =

q

ρ2h

(

δaρ ∂b x + δbρ ∂a x
)

+
1

h
∂a x ∂b x + h∂a χm ∂b χm . (3.19)

Let us next rewrite the Born-Infeld determinant as:

√

− det(g + F ) =
√

− det (G + F )
√

det (1 + X) , (3.20)

where the matrix X is given by:

X ≡
(

G + F
)−1 (

g(f) + f

)

. (3.21)

We shall evaluate the right-hand side of (3.20) by expanding it in powers of X by means

of eq. (2.75). In order to evaluate more easily the trace of the powers of X appearing on

the right-hand side of this equation, let us separate the symmetric and antisymmetric part

in the inverse of the matrix G + F :

(

G + F
)−1

= Ĝ−1 + J , (3.22)

where:

Ĝ−1 ≡ 1

(G + F)S
, J ≡ 1

(G + F)A
. (3.23)

Notice that Ĝ is just the open string metric which, for the case at hand, is given by:

Ĝab dξa dξb = h−1 dx2
1,p−1 + h

(

1 +
q2

ρ4h2

) (

dρ2 + ρ2 dΩ2
2

)

. (3.24)
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Moreover, the antisymmetric matrix J takes the form:

J θϕ = −J ϕθ = − 1√
g̃

q

q2 + ρ4 h2
, (3.25)

where θ, ϕ are the standard polar coordinates on S2 and g̃ = sin2 θ is the determinant of

its round metric. It is now straightforward to show that:

tr X = h Ĝab ∂aχ
m ∂bχ

m +
1

h
Ĝab ∂ax ∂bx +

q

q2 + ρ4 h2

[

2ρ2 ∂ρx +
ǫijfij√

g̃

]

, (3.26)

while, up to quadratic terms in the fluctuations, trX2 is given by:

tr X2 = −fabf
ab +

2

h

q2

q2 + ρ4h2

[

Ĝab ∂ax ∂bx + Ĝρρ (∂ρx)2
]

+
q2

(

q2 + ρ4h2

)2

[

1

2g̃
(ǫijfij)

2 − 4 ρ2 ǫij∂ix fjρ√
g̃

]

, (3.27)

where the indices i, j refer to the directions along the S2 and ǫij = ±1. Using these results

one can readily compute the DBI term of the lagrangian density. Dropping constant global

factors that do not affect the equations of motion, one gets:

LDBI = −ρ2
√

g̃

[

1 +
q2

ρ4h2
+

h

2

(

1 +
q2

ρ4h2

)

Ĝab ∂aχ
m ∂bχ

m

+
1

2h
Ĝab ∂ax ∂bx +

1

4

(

1 +
q2

ρ4h2

)

fabf
ab

]

+
A(ρ)

2
x ǫij fij − q

√
g̃

h2
∂ρx − q

2ρ2h2
ǫij fij , (3.28)

where the indices a, b are raised with the open string metric Ĝ and A(ρ) is the following

function:

A(ρ) ≡ d

dρ

[

q2

h2
(

q2 + ρ4h2
)

]

. (3.29)

To get the above expression of LDBI we have integrated by parts and made use of the

Bianchi identity for the gauge field fluctuation:

ǫij ∂ifjρ +
ǫij

2
∂ρfij = 0 . (3.30)

Similarly, the WZ term can be written as:

LWZ =
√

g̃
q2

ρ2h2
+

√

g̃
q

h2
∂ρx +

q

2ρ2h2
ǫij fij +

∂ρh

h3
xǫij fij . (3.31)
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By combining LDBI and LWZ and dropping the term independent of the fluctuations, we

get that the total lagrangian density is given by:

L = −ρ2
√

g̃

[

h

2

(

1 +
q2

ρ4h2

)

Ĝab ∂aχ
m ∂bχ

m +
1

2h
Ĝab ∂ax ∂bx (3.32)

+
1

4

(

1 +
q2

ρ4h2

)

fabf
ab

]

− C(ρ)

2
x ǫijfij .

In eq. (3.32), and in what follows, the function C(ρ) is given by:

C(ρ) ≡ d

dρ

[

ρ4

q2 + ρ4h2

]

. (3.33)

As it is manifest from (3.32), the transverse scalars χ do not couple to other fields, while the

scalar x is coupled to the fluctuations fij of the gauge field strength along the two-sphere.

For the fluxless case q = 0 these equations were solved in ref. [20], where it was shown that

they give rise to a discrete meson mass spectrum, which can be computed numerically and,

in the case of the D3-D5 intersection, analytically. Let us examine here the situation for

q 6= 0. The equation of motion of the transverse scalars χ that follows from (3.32) is:

∂a

[

√

g̃ ρ2h

(

1 +
q2

ρ4h2

)

Ĝab ∂bχ

)

]

= 0 . (3.34)

By using the explicit form of the open string metric Ĝab (eq. (3.24)), we can rewrite (3.34)

as:

∂ρ

(

ρ2∂ρχ
)

+

[

ρ2h2 +
q2

ρ2

]

∂µ∂µ χ + ∇i∇i χ = 0 . (3.35)

Let us separate variables and write the scalars in terms of the eigenfunctions of the laplacian

in the Minkowski and sphere parts of the brane geometry as:

χ = eikx Y l(S2) ξ(ρ) , (3.36)

where the product kx is performed with the Minkowski metric and l is the angular mo-

mentum on the S2. The fluctuation equation for the function ξ is:

∂ρ ( ρ2 ∂ρξ ) +

{[

R4α ρ2

(ρ2 + L2)2α
+

q2

ρ2

]

M2 − l(l + 1)

}

ξ = 0 , (3.37)

where M2 = −k2 is the mass of the meson. When the distance L 6= 0 and q = 0 eq. (3.37)

gives rise to a set of normalizable solutions that occur for a discrete set of values of M [20].

As argued in ref. [31] for the D3-D5 system, the situation changes drastically when the

flux is switched on. Indeed, let us consider the equation (3.37) when L, q 6= 0 in the IR,

i.e.when ρ is close to zero. In this case, for small values of ρ, eq. (3.37) reduces to:

∂ρ

(

ρ2∂ρξ
)

+

[

q2 M2

ρ2
− l(l + 1)

]

ξ = 0 , (ρ ≈ 0) . (3.38)
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Eq. (3.38) can be solved in terms of Bessel functions, namely:

ξ =
1√
ρ

J±(l+ 1
2
)

(

qM

ρ

)

, (ρ ≈ 0) . (3.39)

Near ρ ≈ 0 the Bessel function (3.39) oscillates infinitely as:

ξ ≈ e±i
qM
ρ , (ρ ≈ 0) . (3.40)

The behaviour (3.40) implies that the spectrum of M is continuous and gapless. Actually,

one can understand this result by rewriting the function (3.39) in terms of the coordinate

xp by using (3.7). Indeed, ρ ≈ 0 corresponds to large |xp| and ξ(xp) can be written in this

limit as a simple plane wave:

ξ ≈ e±iMxp

, ( |xp| → ∞ ) . (3.41)

Thus, the fluctuation spreads out of the defect locus at fixed xp, reflecting the fact that

the bending has the effect of recombining, rather than intersecting, the Dp-branes with the

D(p+2)-branes. As in ref. [31] we can understand this result by looking at the IR form of

the open string metric (3.24). One gets:

Ĝabdξa dξb ≈ L2α

R2α

[

dx2
1,p−1 + q2

( dρ2

ρ4
+

1

ρ2
dΩ2

2

)

]

, (ρ ≈ 0) . (3.42)

By changing variables from ρ to u = q/ρ, this metric can be written as:

L2α

R2α

[

dx2
1,p−1 + du2 + u2 dΩ2

2

]

, (3.43)

which is nothing but the (p+3)-dimensional Minkowski space and, thus, one naturally

expects to get plane waves as in (3.41) as solutions of the fluctuation equations. This

fact is generic for all the fluctuations of this system. Recall that the other fields in the

Lagrangian (3.32) are coupled. However, in appendix A we show that they can be decoupled

by generalizing the results of ref. [32, 20]. The decoupled fluctuation equations can actually

be mapped [21] to that satisfied by the scalars χ. Thus, we conclude that the full mesonic

mass spectrum is continuous and gapless, as a consequence of the recombination of the

color and flavor branes induced by the worldvolume flux.

3.3 An S-dual picture: the F1-Dp intersection

Let us now have a look to the S-dual configurations for the IIB cases in this section, which

will give us information about the weak ’t Hooft coupling regime of the dual theory. For

p = 3 the S-dual background will be once again AdS5 × S5. In this case, the D5-brane

gets mapped to a NS5 brane. However, since the dilaton is zero in this background, at

least formally this situation will be identical to the D3-D5 case already studied above. In

particular we will lose again the discrete spectrum. In turn, we can look at the p = 1 case,
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whose S-dual version is the F1-D3 intersection. Actually, we will analyze the more general

system corresponding to the F1-Dp intersection, according to the array:

1 2 · · · p + 1 p + 2 · · · 9

F1 : × · · · · · ·
Dp : × · · · × · · ·

(3.44)

As in previous cases, we will consider a stack of F1 strings, which we will treat as a

background of type II theory. The corresponding metric is given by:

ds2 = H−1dx2
1,1 + d~r 2 , (3.45)

where, in the near-horizon limit, H = R6/r6, with R6 = 32π2(α′)3 g2
s N . The F1 back-

ground is also endowed with a NSNS B field and a non-trivial dilaton, given by:

B = H−1dx0 ∧ dx1 , e−Φ = H
1
2 . (3.46)

Let us now rewrite this solution in terms of a new coordinate system more suitable for our

probe analysis. First of all, we split the coordinates transverse to the F1 as ~r = (~y, ~z),

where the ~y vector corresponds to the directions 2 · · · p + 1 and ~z refers to the coordinates

transverse to both the F1 and Dp-brane. Moreover, let us assume that p > 1 and use

spherical coordinates to parametrize the subspace spanned by the y’s, i.e. d~y 2 = dρ2 +

ρ2 dΩ2
p−1. Then, the metric (3.45) can be rewritten as:

ds2 = H−1dx2
1,1 + dρ2 + ρ2dΩ2

p−1 + d~z 2 . (3.47)

The dynamics of the Dp-brane probe is determined by the DBI lagrangian, which in this

case takes the form:

L = −Tp e−φ
√

− det( g + F ) , (3.48)

where F is the following combination of the worldvolume gauge field strength F and the

pullback P [B] of the NSNS B field:

F = F − P [B] . (3.49)

Let us choose x0, ρ and the p − 1 angles parametrizing the Sp−1 sphere as our set of

worldvolume coordinates. We will consider embeddings of the type:

x1 = x(ρ) , | ~z | = L . (3.50)

Moreover, we will switch on an electric field F0ρ ≡ F in the worldvolume, such that the

only non-vanishing component of F is:

F0ρ = F − H−1 x′ , (3.51)

where, from now on, H should be understood as the following function of ρ:

H = H(ρ) =

[

R2

ρ2 + L2

]3

. (3.52)
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The form of the lagrangian density (3.48) for this ansatz can be straightforwardly computed,

with the result:

L = −Tp ρp−1
√

g̃
√

1 + 2Fx′ − HF 2 , (3.53)

and the equation of motion for the electric field F is:

∂

∂ρ

[

∂L
∂F

]

= 0 . (3.54)

This equation can be immediately integrated, namely:

ρp−1
(

HF − x′
)

√
1 + 2Fx′ − HF 2

= c , (3.55)

where c is a constant. Moreover, from (3.55) we can obtain F as a function of x′ and ρ:

F = H−1

[

x′ + c

√

H + (x′)2
√

c2 + ρ2(p−1) H

]

. (3.56)

Actually, F can be eliminated in a systematic way by means of a Legendre transformation.

Indeed, let us define the Routhian density R as follows:

R = F
∂L
∂F

− L . (3.57)

By computing the derivative in the explicit expression of L in (3.53), and by using (3.56),

one can readily show that R can be written as:

R = Tp

√

g̃ H−1

[

√

c2 + ρ2(p−1) H
√

H + (x′)2 + cx′

]

. (3.58)

The equation of motion for x derived from R is just:

∂

∂ρ

[

∂R
∂x′

]

= 0 . (3.59)

A particular solution of this equation can be obtained by requiring the vanishing of ∂R/∂x′.

By computing explicitly this derivative from the expression of R in (3.58) one easily shows

that the value of x′ for this particular solution is simply:

x′ = − c

ρp−1
, (3.60)

which, for p 6= 2 can be integrated as:

x(ρ) =
c

p − 2

1

ρp−2
+ constant , (p 6= 2) , (3.61)

while for p = 2 the Dp-brane has a logarithmic bending of the type x(ρ) ∼ −c log ρ.

Moreover, after substituting (3.60) on the right-hand side of (3.56) one easily realizes that

the worldvolume gauge field F for this configuration vanishes, i.e.:

F = 0 . (3.62)
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Actually, it is also easy to verify from (3.56) that the requirement of having vanishing

electric gauge field on the worldvolume is equivalent to have a bending given by eq. (3.60).

Notice also that the on-shell lagrangian density (3.53) for this configuration becomes L =

−Tp ρp−1
√

g̃, which is independent of the distance L. This suggests that the configuration

is supersymmetric, a fact that we will verify explicitly in the next subsection by looking at

the kappa symmetry of the embedding.

Notice that the embedding (3.60) depends on the constant c. This constant is con-

strained by a flux quantization condition which, for electric worldvolume gauge fields, was

worked out in [45] and reads:

∫

Sp−1

∂L
∂F

= nTf , n ∈ Z . (3.63)

From (3.53) one easily gets:

∂L
∂F

∣

∣

∣

∣

∣

F=0

= Tp

√

g̃ c , (3.64)

which allows one to compute the integral on the left-hand side of (3.63). Let us express

the result in terms of the Yang-Mills coupling, which was written in terms of string theory

quantities in (2.92). Taking into account that the Dp-brane tension Tp is related to gYM as

Tp = T 2
f /g2

YM, one easily arrives at the following expression of c in terms of the integer n:

c =
α′g2

YM

Ωp−1
2πn , (3.65)

where Ωp−1 is the volume of a unit Sp−1, namely Ωp−1 = 2π
p
2 /Γ(p

2 ). Physically, the integer

n represents the number of fundamental strings that are reconnected to the Dp-brane.

Notice that for p = 3 eq. (3.65) reduces to c = nπα′gs, to be compared with the S-dual

relation (3.10).

3.3.1 Supersymmetry

The supersymmetric configurations of a D-brane probe in a given background are those for

which the following condition:

Γκ ǫ = ǫ , (3.66)

is satisfied [46]. In eq. (3.66), Γκ is a matrix whose explicit expression depends on the

embedding of the probe (see below) and ǫ is a Killing spinor of the background. For

simplicity we will restrict ourselves to study the kappa symmetry condition (3.66) in the

type IIB theory. First of all, let us define the induced worldvolume gamma matrices as:

γm = ∂m XM EN̄
M ΓN̄ , (3.67)

where ΓN̄ are constant ten-dimensional Dirac matrices and EN̄
M is the vielbein for the ten-

dimensional metric. Then, if γm1m2··· denotes the antisymmetrized product of the induced
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gamma matrices (3.67), the kappa symmetry matrix for a Dp-brane in the type IIB theory

is [47]:

Γκ =
1

√

− det(g + F)

∞
∑

n=0

(−1)n

2nn!
γm1n1 ···mnnn Fm1n1 · · · Fmnnn × (σ3)

p−3
2

−n (iσ2) Γ(0) ,

(3.68)

where Γ(0) denotes:

Γ(0) =
1

(p + 1)!
ǫm1···mp+1 γm1···mp+1 . (3.69)

In eq. (3.68) σ2 and σ3 are Pauli matrices that act on the two Majorana-Weyl components

(arranged as a two-dimensional vector) of the type IIB spinors.

Let us consider a Dp-brane embedded in the geometry (3.47) according to the

ansatz (3.50). Let us assume that we parametrize the Sp−1 sphere by means of the angles

α1, · · · , αp−1. The induced gamma matrices are:

γx0 = H− 1
2 Γx0 ,

γρ = Γρ + H− 1
2 x′ Γx1 ,

γα1 ···αp−1 = ρp−1
√

g̃ ΓΩp−1 , (3.70)

where ΓΩp−1 ≡ Γα1 · · · Γαp−1 . Using these matrices we can write the kappa symmetry

matrix Γκ in (3.68) as:

Γκ =
ρp−1

√
g̃

√

− det(g + F)
(σ3)

p−3
2 (iσ2)

[

H− 1
2 Γx0ρ + H−1 x′ Γx0x1 + F σ3

]

ΓΩp−1 . (3.71)

Let us now study the action of Γκ on the Killing spinor ǫ. We shall impose to ǫ the

projections corresponding to the Dp-brane and the F1-string, namely:

(σ3)
p−3
2 (iσ2) Γx0ρ ΓΩp−1 ǫ = ǫ ,

σ3 Γx0x1 ǫ = ǫ . (3.72)

It is now straightforward to verify that

Γκ ǫ =
ρp−1

√
g̃

√

− det(g + F)

[

H− 1
2 +

(

F + H−1 x′
)

(σ3)
p−1
2 (iσ2) ΓΩp−1

]

ǫ . (3.73)

We want to impose that the right-hand side of (3.73) be ǫ. It is clear that, if we do not

want to impose any further projection to the spinor, we should require that the term that

is not proportional to the unit matrix cancels, which happens when:

F + H−1 x′ = 0 . (3.74)

Notice that this condition is equivalent to require the vanishing of F (see eq. (3.51)), as

claimed. Moreover, by computing the DBI determinant on the denominator of (3.73) one

readily proves that, indeed, eq. (3.66) is satisfied by our configuration.
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3.3.2 Fluctuations

Now we will study the fluctuations around the configuration described by eqs. (3.50)

and (3.62). We will only analyze the fluctuations on the transverse ~z space, which we

will denote by χ. After a straightforward computation, we get that, up to quadratic order,

the lagrangian density of these fluctuations is:

L = −ρp−1
√

g̃

(

1 +
c2

ρ2(p−1) H

)

Gµν∂µχ∂νχ , (3.75)

where the effective metric Gµν is given by:

Gµν dxµdxν = −H−1(dx0)2 +

(

1 +
c2

ρ2(p−1) H

)

( dρ2 + ρ2dΩ2
p−1 ) . (3.76)

As a check, one can verify that the equation derived from (3.75) for p = 3 (i.e. for the F1-

D3 intersection) matches precisely that of the transverse scalar fluctuations of the D1-D3

system (i.e. eq. (3.34) with p = 1), once the constants c and q are identified. This is, of

course, expected from S-duality and implies that the F1-D3 spectrum is continuous and

gapless. For p > 3 the meson spectrum displays the same characteristics as in the F1-D3

intersection. However, the F1-D2 system behaves differently. Indeed, for p = 2 the profile

function x(ρ) is logarithmic (see eqs. (3.60) and (3.61)). Moreover, one can check that

in this case the effective metric (3.76) in the IR region ρ ∼ 0 corresponds to an space of

the type Min1,1 × S1. Actually, by studying the fluctuation equation derived from (3.75)

for p = 2 and ρ ∼ 0, one can verify that non-oscillatory solutions can exist if the KK

momentum in the S1 is non-zero. As one can check by solving numerically the fluctuation

equation, in this case the mass spectrum starts with a finite number of discrete states,

followed by a continuum.

4. M2-M5 intersection and codimension one defects in M-theory

We will consider now a close relative in M-theory of the Dp-D(p+2) intersections, namely

the M2-M5 intersection along one common spatial dimension. The corresponding array is:

1 2 3 4 5 6 7 8 9 10

M2 : × ×
M5 : × × × × ×

(4.1)

Since this configuration can be somehow thought as the uplift of the D2-D4 intersection to

eleven dimensions, we expect a behaviour similar to the one studied in section 3. Indeed,

notice that the M5-brane induces a codimension one defect in the M2-brane worldvolume.

As in the previous examples we will treat the highest dimensional brane (i.e. the M5-brane)

as a probe in the background created by the lower dimensional object, which in this case is

the M2-brane. The near-horizon metric of the M2-brane background of eleven-dimensional

supergravity is:

ds2 =
r4

R4
dx2

1,2 +
R2

r2
d~r 2 , (4.2)

– 34 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
4

where R is constant, dx2
1,2 represents the Minkowski metric in the directions x0, x1, x2 of the

M2-brane worldvolume and ~r is an eight-dimensional vector transverse to the M2-brane.

The metric (4.2) is the one of the AdS4 × S7 space, where the radius of the AdS4 (S7)

factor is R/2 (R). The actual value of R for a stack of N coincident M2-branes is:

R6 = 32π2l6pN , (4.3)

where lp is the Planck length in eleven dimensions. This background is also endowed with

a three-form potential C(3), whose explicit expression is:

C(3) =
r6

R6
dx0 ∧ dx1 ∧ dx2 . (4.4)

The dynamics of the M5-brane probe is governed by the so-called PST action [48].

In the PST formalism the worldvolume fields are a three-form field strength F and an

auxiliary scalar a. This action is given by [48]:

S = TM5

∫

d6ξ

[

−
√

−det(gij + H̃ij) +

√−detg

4∂a · ∂a
∂ia (⋆H)ijk Hjkl∂

la

]

+

+ TM5

∫

[

P [C(6)] +
1

2
F ∧ P [C(3)]

]

, (4.5)

where TM5 = 1/(2π)5 l6p is the tension of the M5-brane, g is the induced metric and H is the

following combination of the worldvolume gauge field F and the pullback of the three-form

C(3):

H = F − P [C(3)] . (4.6)

Moreover, the field H̃ is defined as follows:

H̃ ij =
1

3!
√−det g

1
√

−(∂a)2
ǫijklmn ∂k aHlmn , (4.7)

and the worldvolume indices in (4.5) are lowered with the induced metric gij .

In order to study the embedding of the M5-brane in the M2-brane background, let us

introduce a more convenient set of coordinates. Let us split the vector ~r as ~r = (~y, ~z),

where ~y = (y1, · · · , y4) is the position vector along the directions 3456 in the array (4.1)

and ~z = (z1, · · · , z4) corresponds to the directions 7, 8, 9 and 10. Obviously, if ρ2 = ~y · ~y,

one has that ~r 2 = ρ2 + ~z 2 and d~r 2 = dρ2 + ρ2 dΩ2
3 + d~z 2, where dΩ2

3 is the line element

of a three-sphere. Thus, the metric (4.2) becomes:

ds2 =
( ρ2 + ~z 2 )2

R4
dx2

1,2 +
R2

ρ2 + ~z 2
( dρ2 + ρ2dΩ2

3 + d~z 2 ) . (4.8)

We will now choose x0, x1, ρ and the three angular coordinates that parametrize dΩ2
3 as

our worldvolume coordinates ξi. Moreover, we will assume that the vector ~z is constant

and we will denote its modulus by L, namely:

| ~z | = L . (4.9)
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To specify completely the embedding of the M5-brane we must give the form of the remain-

ing scalar x2 as a function of the worldvolume coordinates. For simplicity we will assume

that x2 only depends on the radial coordinate ρ, i.e. that:

x2 = x(ρ) . (4.10)

Moreover, we will switch on a magnetic field F along the three-sphere of the M5-brane

worldvolume, in the form:

F = q Vol (S3 ) , (4.11)

where q is a constant and Vol (S3 ) is the volume form of the worldvolume three-sphere.

Notice that the induced metric for this configuration is given by:

gijdξidξj =
( ρ2 + L2 )2

R4
dx2

1,1 +
R2

ρ2 + L2

{ (

1 +
( ρ2 + L2 )3

R6
(x′)2

)

dρ2 + ρ2 dΩ2
3

}

.

(4.12)

In order to write the PST action for our ansatz we must specify the value of the PST

scalar a. As pointed out in ref. [48] the field a can be eliminated by gauge fixing, at the

expense of losing manifest covariance. Here we will choose a gauge such that the auxiliary

PST scalar is:

a = x1 . (4.13)

It is now straightforward to prove that the only non-vanishing component of the field H̃ is:

H̃x0ρ = − i

R4

( ρ2 + L2 )2

ρ3

(

1 +
( ρ2 + L2 )3

R6
(x′)2

) 1
2

q . (4.14)

Using these results we can write the PST action (4.5) as:

S = −2π2 TM5

∫

d2x dρ

[

ρ3

√

1+
(ρ2+L2)3

R6
(x′)2

√

1+
(ρ2+L2)3

R6

q2

ρ6
(4.15)

+
( ρ2 + L2 )3

R6
q x′

]

.

Let L be the lagrangian density for the PST action, which we can take as given by the

expression inside the brackets in (4.15). Since x does not appear explicitly in the action,

one can immediately write a first integral of the equation of motion of x(ρ), namely:

∂L
∂x′

= constant . (4.16)

By setting the constant on the right-hand side of (4.16) equal to zero, this equation reduces

to a simple first-order equation for x(ρ), i.e.:

x′ = − q

ρ3
, (4.17)
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which can be immediately integrated to give:

x(ρ) = x̄ +
q

2ρ2
, (4.18)

where x̄ is a constant. Notice that the flux parametrized by q induces a bending of the

M5-brane, which is characterized by the non-trivial dependence of x on the holographic

coordinate ρ. Actually, when the first-order eq. (4.17) holds, the two square roots in (4.15)

are equal and there is a cancellation with the last term in (4.15). Indeed, the on-shell

action takes the form:

S = −2π2T5

∫

d2x dρ ρ3 , (4.19)

which is independent of the M2-M5 distance L. This is usually a signal of supersymmetry

and, indeed, we will verify in appendix B that the embeddings in which the flux and the

bending are related as in (4.17) are kappa symmetric. Thus, eq. (4.17) can be regarded as

the first-order BPS equation required by supersymmetry. Notice also that the three-form

flux (4.11) induces M2-brane charge in the M5-brane worldvolume, as it is manifest from

the form of the PST action (4.5). In complete analogy with the Dp-D(p+2) system, we can

interpret the present M-theory configuration in terms of M2-branes that recombine with

the M5-brane. Moreover, in order to gain further insight on the effect of the bending, let

us rewrite the induced metric (4.12) when the explicit form of x(ρ) written in eq. (4.18) is

taken into account. One gets:

( ρ2 + L2 )2

R4
dx2

1,1 +
R2

ρ2 + L2

{(

1 +
q2

R6

( ρ2 + L2 )3

ρ6

)

dρ2 + ρ2 dΩ2
3

}

. (4.20)

From (4.20) one readily notices that the UV induced metric at ρ → ∞ (or, equivalently

when the M2-M5 distance L is zero) takes the form AdS3(Reff/2)×S3(R), where the AdS3

radius Reff depends on the flux as:

Reff =

(

1 +
q2

R6

)
1
2

R . (4.21)

Therefore, our M5-brane is wrapping an AdS3 submanifold of the AdS4 background. Actu-

ally, there are infinite ways of embedding an AdS3 within an AdS4 space and the bending

of the probe induced by the flux is selecting one particular case of these embeddings. In

order to shed light on this, let us suppose that we have an AdS4 metric of the form:

ds2
AdS4

=
ρ4

R4
dx2

1,2 +
R2

ρ2
dρ2 . (4.22)

Let us now change variables from (x0,1, x2, ρ) to (x̂0,1, ̺, η), as follows:

x0,1 = 2 x̂0,1 , x2 = x̄ +
2

̺
tanh η , ρ2 =

R3

4
̺ cosh η , (4.23)

where x̄ is a constant. In these new variables the AdS4 metric (4.22) can be written as a

foliation by AdS3 slices, namely:

ds2
AdS4

=
R2

4
( cosh2 η ds2

AdS3
+ dη2 ) , (4.24)
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where ds2
AdS3

is given by:

ds2
AdS3

= ̺2 ( − (dx̂0)2 + (dx̂1)2 ) +
d̺2

̺2
. (4.25)

Clearly the AdS3 slices in (4.24) can be obtained by taking η = constant. The radius of

such AdS3 slice is Reff/2, with:

Reff = R cosh η . (4.26)

Moreover, one can verify easily by using the change of variables (4.23) that our embed-

ding (4.18) corresponds to one of such AdS3 slices with:

η = ηq = sinh−1
( q

R3

)

. (4.27)

Furthermore, one can check that the AdS3 radius Reff of eq. (4.26) reduces to (4.21) when

η = ηq.

4.1 Fluctuations

Let us now study the fluctuations of the M2-M5 intersection. For simplicity we will focus

on the fluctuations of the transverse scalars which, without loss of generality, we will

parametrize as:

z1 = L + χ1 , zm = χm , (m = 2, · · · , 4) . (4.28)

Let us substitute this ansatz in the PST action and keep up to second order terms in the

fluctuation χ. As the calculation is very similar to the one performed in subsection 3.2,

we skip the details and give the final result for the effective lagrangian of the fluctuations,

namely:

L = −ρ3
√

g̃
R2

ρ2 + L2

[

1 +
q2

R6

( ρ2 + L2 )3

ρ6

]

Ĝij ∂iχ∂jχ , (4.29)

where g̃ is the determinant of the round metric of the S3 and Ĝij is the following effective

metric on the M5-brane worldvolume:

Ĝij dξi dξj =
( ρ2 + L2 )2

R4
dx2

1,1 +
R2

ρ2 + L2

(

1 +
q2

R6

( ρ2 + L2 )3

ρ6

)

(

dρ2 + ρ2 dΩ2
3

)

.

(4.30)

Notice the close analogy with the Dp-D(p+2) system studied in subsection 3.2. Actu-

ally (4.30) is the analogue of the open string metric in this case. The equation of motion

for the scalars can be derived straightforwardly from the lagrangian density (4.29). For

q = 0 this equation was integrated in ref. [20], where the meson mass spectra was also

computed. This fluxless spectra is discrete and displays a mass gap. As happened with the

codimension one defects in type II theory studied in section 3, the situation changes dras-

tically when q 6= 0. To verify this fact let us study the form of the effective metric (4.30)

in the UV (ρ → ∞) and in the IR (ρ → 0). After studying this metric when ρ → ∞, one

easily concludes that the UV is of the form AdS3(Reff/2)× S3(Reff), where Reff is just the
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effective radius with flux written in (4.21). Thus, the effect of the flux in the UV is just

a redefinition of the AdS3 and S3 radii of the metric governing the fluctuations. On the

contrary, for q 6= 0 the behaviour of this metric in the IR changes drastically with respect

to the fluxless case. Indeed, for ρ ≈ 0 the metric (4.30) takes the form:

L4

R4

[

dx2
1,1 + q2

( dρ2

ρ6
+

1

ρ4
dΩ2

2

)

]

, (ρ ≈ 0) . (4.31)

Notice the analogy of (4.31) with the IR metric (3.42) of the Dp-D(p+2) defects. Actually,

the IR limit of the equation of motion of the fluctuation can be integrated, as in (3.39), in

terms of Bessel functions, which for ρ ≈ 0 behave as plane waves of the form e±iMx, where

x is the function (4.18). Notice that ρ ≈ 0 corresponds to large x in (4.18). Thus, the

fluctuations spread out of the defect and oscillate infinitely at the IR and, as a consequence,

the mass spectrum is continuous and gapless. In complete analogy with the Dp-D(p+2)

with flux, this is a consequence of the recombination of the M2- and M5-branes and should

be understood microscopically in terms of dielectric multiple M2-branes polarized into a

M5-brane, once such an action is constructed.

5. The codimension two defect

We now analyze the codimension two defect, which can be engineered in type II string

theory as a Dp-Dp intersection over p − 2 spatial dimensions. We will consider a single

Dp′-brane intersecting a stack of N Dp-branes, according to the array:

1 · · · p − 2 p − 1 p p + 1 p + 2 · · · 9

Dp : × · · · × × × · · ·
Dp ′ : × · · · × × × · · ·

(5.1)

In the limit of large N we can think of the system as a probe Dp′-brane in the near horizon

geometry of the Dp-branes given by (2.60), (2.62) and (2.63). It is clear from the array (5.1)

that the Dp′-brane produces a defect of codimension two in the field theory dual to the

stack of Dp-branes. The defect field theory dual to the D3-D3 intersection was studied in

detail in ref. [28] (see also ref. [30]). Notice also that this same D3-D3 intersection was

considered in [49] in connection with the surface operators of N = 4 super Yang-Mills

theory, in the context of the geometric Langlands program.

In order to describe the dynamics of the Dp′-brane probe, let us relabel the xp−1 and

xp coordinates appearing in the metric (2.60) as:

λ1 ≡ xp−1 , λ2 ≡ xp . (5.2)

Moreover, we will split the coordinates ~r transverse to the Dp-branes as ~r = (~y , ~z), where

~y = (y1, y2) corresponds to the p+1 and p+2 directions in (5.1) and ~z = (z1, · · · , z7−p)

to the remaining transverse coordinates. With this split of coordinates the background

metric reads:

ds2 =

[

~y 2 + ~z 2

R2

]α

( dx2
1,p−2 + d~λ 2 ) +

[

R2

~y 2 + ~z 2

]α

( d~y 2 + d~z 2 ) , (5.3)
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where dx2
1,p−2 is the Minkowski metric in the coordinates x0, · · · xp−2 and α has been defined

in (2.60).

5.1 Supersymmetric embeddings

To study the embeddings of the Dp′-brane probe in the background (2.60)–(2.63) let us

consider ξm = (x0, · · · , xp−2, y1, y2) as worldvolume coordinates. In this approach ~λ and

~z are scalar fields that characterize the embedding. Actually, we will restrict ourselves to

the case in which ~λ depends only on the ~y coordinates (i.e. ~λ = ~λ( ~y )) and the transverse

separation | ~z | is constant, i.e. | ~z | = L.

In order to characterize the embeddings of the probe that preserve supersymmetry, let

us try to implement the kappa symmetry condition (3.66). The induced gamma matrices

γxµ (µ = 0, · · · , p − 2) and γyi (i = 1, 2) can be computed from eq. (3.67), with the result:

γxµ =

[

ρ2 + L2

R2

]α
2

Γxµ ,

γyi =

[

R2

ρ2 + L2

]α
2

Γyi +

[

ρ2 + L2

R2

]α
2

[

∂iλ
1 Γλ1 + ∂iλ

2 Γλ2

]

, (5.4)

where ∂i ≡ ∂yi and, as before, we have defined ρ2 = ~y ·~y. To simplify matters, let us assume

that p is odd and, thus, we are working on the type IIB theory. The general expression of

the kappa symmetry matrix Γκ has been written in eq. (3.68). For the present case this

matrix reads:

Γκ =
1

√

− det(g)

[

ρ2 + L2

R2

]
(p−1)α

2

(σ3)
p−3
2 (iσ2) Γx0···xp−2 γy1y2 . (5.5)

The antisymmetrized product γy1y2 can be straightforwardly computed from the expression

of the γyi matrices in (5.4). One gets:

[

ρ2+L2

R2

]α

γy1y2 = Γy1y2 +

[

ρ2 + L2

R2

]2α
(

∂1λ
1 ∂2λ

2−∂1λ
2 ∂2λ

1
)

Γλ1λ2 (5.6)

+

[

ρ2 + L2

R2

]α
[

∂2λ
1 Γy1λ1 +∂2λ

2 Γy1λ2−∂1λ
1 Γy2λ1−∂1λ

2 Γy2λ2

]

.

Let us now use this expression to fulfill the condition Γκǫ = ǫ, where ǫ is a Killing spinor

of the Dp-brane background. For a generic value of p these Dp-brane spinors satisfy the

projection condition:

(σ3)
p−3
2 (iσ2) Γx0···xp−2 Γλ1λ2 ǫ = ǫ . (5.7)

Moreover we will also impose the projection corresponding to the Dp′- brane probe, namely:

(σ3)
p−3
2 (iσ2) Γx0···xp−2 Γy1y2 ǫ = ǫ . (5.8)
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Notice that (5.7) and (5.8) are compatible, as it should for a supersymmetric intersection.

Moreover, they can be combined to give:

Γy1y2 ǫ = Γλ1λ2 ǫ , (5.9)

which implies that:

[

ρ2 + L2

R2

]α

γy1y2 ǫ =

[

1 +

[

ρ2 + L2

R2

]2α
(

∂1λ
1 ∂2λ

2 − ∂1λ
2 ∂2λ

1
)

]

Γλ1λ2 ǫ (5.10)

+

[

ρ2 + L2

R2

]α
[

(∂2λ
1 + ∂1λ

2)Γy1λ1 + (∂2λ
2 − ∂1λ

1)Γy1λ2

]

ǫ .

We can now use this result to compute Γκ ǫ, where Γκ is given in (5.5). By using the condi-

tion (5.9) one easily gets that the terms of the first line of the right-hand side of (5.10) give

contributions proportional to the identity matrix, while those on the second line of (5.10)

give rise to terms that contain matrices that do not act on ǫ as the identity unless we im-

pose some extra projections which would reduce the amount of preserved supersymmetry.

Since we do not want this to happen, we require that the coefficients of Γy1λ1 and Γy1λ2

in (5.10) vanish, i.e.:

∂1λ
1 = ∂2λ

2 , ∂2λ
1 = − ∂1λ

2 . (5.11)

Notice that eq. (5.11) is nothing but the Cauchy-Riemann equations. Indeed, let us define

the following complex combinations of worldvolume coordinates and scalars 3:

Z = y1 + iy2 , W = λ1 + iλ2 . (5.12)

In addition, if we define the holomorphic and antiholomorphic derivatives as:

∂ =
1

2
(∂1 − i∂2) , ∂̄ =

1

2
(∂1 + i∂2) , (5.13)

then (5.11) can be written as:

∂̄ W = 0 , (5.14)

whose general solution is an arbitrary holomorphic function of Z, namely:

W = W (Z) . (5.15)

It is also straightforward to check that for these holomorphic embeddings the induced

metric takes the form:

[

ρ2 + L2

R2

]α

dx2
1,p−2 +

[

R2

ρ2 + L2

]α [

1 +

[

ρ2 + L2

R2

]2α

∂W∂̄W̄

]

dZ dZ̄ , (5.16)

3The complex worldvolume coordinate Z should not be confused with the real transverse scalars ~z.

Notice also that ρ2 = |Z|2.
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whose determinant is:

√

− det(g) =

[

ρ2 + L2

R2

]
(p−3)α

2
[

1 +

[

ρ2 + L2

R2

]2α

∂W∂̄W̄

]

. (5.17)

Using this result one can easily verify that the condition Γκǫ = ǫ is indeed satisfied.

Moreover, for these holomorphic embeddings the DBI lagrangian density takes the form:

LDBI = −Tp e−φ
√

− det(g) = −Tp

[

1 +

[

ρ2 + L2

R2

]2α

∂W∂̄W̄

]

, (5.18)

where we have used the value of e−φ for the Dp-brane background displayed in eq. (2.62).

On the other hand, from the form of the RR potential C(p+1) written in (2.63) one can

readily check that, for these holomorphic embeddings, the WZ piece of the lagrangian can

be written as:

LWZ = Tp

[

ρ2 + L2

R2

]2α

∂W∂̄W̄ . (5.19)

Notice that, for these holomorphic embeddings, the WZ lagrangian LWZ cancels against the

second term of LDBI (see eq. (5.18)). Thus, once again, the on-shell action is independent

of the distance L, a result which is a consequence of supersymmetry and holomorphicity.

Notice that, from the point of view of supersymmetry, any holomorphic curve W (Z)

is allowed. Obviously, we could have W =constant. In this case the probe sits at a

particular constant point of its transverse space and does not recombine with branes of the

background. If, on the contrary, W (Z) is not constant, Liouville theorem ensures us that

it cannot be bounded in the whole complex plane. The points at which |W | diverge are

spikes of the probe profile, and one can interpret them as the points where the probe and

background branes merge. Notice that, as opposed to the other cases studied in this paper,

the non-trivial profile of the embedding is not induced by the addition of any worldvolume

field. Thus, we are not dissolving any further charge in the probe brane and a dielectric

interpretation is not possible now.

The field theory dual for the p = 3 system has been worked out in refs. [28] and [30].

The dual gauge theory for this D3-D3 intersection was shown to correspond to two N = 4

four-dimensional theories coupled to each other through a two-dimensional defect that

hosts a bifundamental hypermultiplet. The Coulomb branch corresponds to taking the

embedding W = constant. Moreover, one can seek for a Higgs branch arising from the

corresponding D and F flatness conditions of the supersymmetric defect theory. Actually,

it was shown in [28, 30] that this Higgs branch corresponds to the embedding W = c/Z,

where c is a constant. Interestingly, only for these embeddings the induced UV metric is

of the form AdS3 ×S1. Indeed, one can check that the metric (5.16) for p = 3 (and α = 1)

and for the profile W = c/Z reduces in the UV to that of the AdS3 × S1 space, where the

two factors have the same radii Reff =
√

1 + c2

R4 R. Thus, as in the M2-M5 intersection

of section 4, the constant c parametrizes the particular AdS3 × S1 slice of the AdS5 × S5

space that is occupied by our D3-brane probe.
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5.2 Fluctuations of the Dp-Dp intersection

Let us now study the fluctuations around the previous configurations. We will concentrate

on the fluctuations of the scalars transverse to both types of branes, i.e. those along the ~z

directions. Let χ be one of such fields. Expanding the action up to quadratic order in the

fluctuations it is easy to see that the lagrangian density for χ is:

L = −
[

R2

ρ2 + L2

]α [

1 +

[

ρ2 + L2

R2

]2α

∂W∂̄W̄

]

Gmn ∂mχ∂nχ , (5.20)

where Gmn is the induced metric (5.16). Let us parametrize the complex variable Z in

terms of polar coordinates as Z = ρ eiθ and let us separate variables in the fluctuation

equation as

χ = eikx eilθ ξ(ρ) , (5.21)

where the product kx is performed with the Minkowski metric of the defect. If M2 = −k2,

the equation of motion for the radial function ξ(ρ) takes the form:

[ [

R2

ρ2 + L2

]2α [

1 +

[

ρ2 + L2

R2

]2α

∂W∂̄W̄

]

M2 − l2

ρ2
+

1

ρ
∂ρ( ρ ∂ρ)

]

ξ(ρ) = 0 . (5.22)

For W =constant, eq. (5.22) was solved in ref. [20], where it was shown to give rise to a

mass gap and a discrete spectrum of M . As in the case of the codimension one defects, this

conclusion changes completely when we go to the Higgs branch. Indeed, let us consider

the embeddings with W ∼ 1/Z. One can readily prove that for ρ → ∞ the function ξ(ρ)

behaves as ξ(ρ) ∼ c1ρ
l + c2ρ

−l, which is exactly the same behaviour as in the W =constant

case. However, in the opposite limit ρ → 0 the fluctuation equation can be solved in terms

of Bessel functions which oscillate infinitely as ρ → 0. Notice that, for our Higgs branch

embeddings, ρ → 0 means W → ∞ and, therefore, the fluctuations are no longer localized

at the defect, as it happened in the case of the Dp-D(p+2) and M2-M5 intersections. Thus

we conclude that, also in this case, the mass gap is lost and the spectrum is continuous.

6. Conclusions

In this paper we have studied the holographic description of the Higgs branch of a large

class of theories with fundamental matter. These theories are embedded in string theory

as supersymmetric systems of intersecting branes. The strings joining both kind of branes

give rise to bifundamental matter confined to the intersection, which once the suitable field

theory limit is taken, becomes fundamental matter with a flavor symmetry.

The general picture that emerges from our results is that the Higgs phase is realized

by recombining both types of intersecting branes. From the point of view of the higher

dimensional flavor brane the recombination takes place when a suitable embedding is chosen

and/or some flux of the worldvolume gauge field is switched on. This flux is dissolving color

brane charge in the flavor branes and, thus, it is tempting to search for a microscopical

description from the point of view of those dissolved branes. Indeed, we have seen that the
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vacuum conditions of the dielectric description (when this description is available) match

exactly the F- and D-flatness constraints that give rise to the Higgs phase on the field

theory side, which gives support to our holographic description of the Higgs branch.

The first case studied was the Dp-D(p+4) intersections, where the flavor D(p+4)-

branes fill completely the worldvolume directions of the color Dp-brane. Following [26], we

argued that the holographic description of the Higgs branch of this system corresponds to

having a self-dual gauge field along the directions of the worldvolume of the D(p+4)-brane

that are orthogonal to the Dp-brane. To confirm this statement we have worked out in

detail the microscopic description of this system and we have computed the meson mass

spectra as a function of the quark VEV.

We also analyzed other intersections that are dual to gauge theories containing defects

of non-vanishing codimension. The paradigmatic example of these theories is the Dp-

D(p+2) system, where a detailed microscopic description can be found. Other cases include

the M2-M5 intersection in M-theory as well as the Dp-Dp system, which gives rise to a

codimension two defect. In this latter case the field theory limit does not decouple the flavor

symmetry, so we actually have a SU(N) × SU(M) theory. In addition, the profile of the

intersection is only constrained to be holomorphic in certain coordinates, but is otherwise

unspecified. In any case, it turns out that conformal invariance in the UV is preserved

only for two particular curves, which can be shown to correspond to the Coulomb and

Higgs phases (see [28]). In all these non-zero codimension defect theories we studied the

meson spectrum and we have shown that it is continuous and that the mass gap is lost.

The reason behind this result is the fact that, due to the recombination of color and flavor

branes in the Higgs branch, the defect can spread over the whole bulk, which leads to an

effective Minkowski worldvolume metric in the IR for the flavor brane. This implies the

loss of a KK scale coming from a compact manifold and, therefore, the disappearance of

the discrete spectrum. Notice that the case of the Dp-D(p+4) system is different, since in

this case the defect fills the whole color brane and there is no room for spreading on the

Higgs branch.

Also the Dp-Dp case deserves special attention, since it behaves in a completely dif-

ferent manner to all the other intersections. As we already mentioned the intersection

profile is not uniquely fixed by supersymmetry. However, just for two of all the possible

embeddings we recover conformal invariance in the UV. While one of them corresponds to

the Coulomb phase, the other corresponds to the Higgs phase. It should be stressed that

in this case there is no need for extra flux to get the Higgs phase, which in this sense is

purely geometrical. The other important difference is that in this case the field theory limit

does not decouple any of the gauge symmetries. Then, our fields will be bifundamentals

under the gauge group on each Dp-brane. Taking into account the relation with the surface

operators in gauge theories [49], it would be interesting to gain more understanding of this

system.

Let us now discuss some of the possible extensions of our work. Notice that our analysis

has been performed in the probe approximation, in which we neglect the backreaction of

the flavor branes on the geometry. This approximation is valid when the number of flavor

branes is small as compared to the number of color branes. The analysis of the backreacted
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geometry corresponding to the Higgs branch is of obvious interest. In particular it would

be very exciting to find the way in which the backreacted geometry encodes some of the

phenomena that we have uncovered in the probe approximation. Actually, the backreacted

geometry corresponding to the D3-D5 intersection was found in refs. [51, 52]. Also, it

would be interesting to see if one can apply the smearing procedure proposed in [53] (see

also [54]) to find a solution of the equations of motion of the gravity plus branes systems

studied in this paper.

Another problem of great interest is trying to describe holographically (even in the

probe approximation) the Higgs branch of theories with less supersymmetry. The most

obvious case to look at would be that of branes intersecting on the conifold, such as the

D3-D7 systems in the Klebanov-Witten model [55] and its generalizations. Actually, the

supersymmetric D3-D5 intersections with flux on the conifold and on more general Sasaki-

Einstein cones were obtained in ref. [16, 56]. These configurations are the analogue of the

ones analyzed in section 3, and it would be desirable to find its field theory interpretation.
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A. Fluctuations of the Dp-D(p+2) intersection

In this appendix we will complete the analysis of the fluctuations of the Dp-D(p+2) system

of section 3. Recall that the Lagrangian that governs these fluctuations has been written in

eq. (3.32). In section 3 we already studied the equation of motion of the transverse scalars

χ and we concluded that the associated meson mass spectrum is continuous and gapless.

The other fields in (3.32) are the scalar x (which is transverse to the D(p+2)-brane and

is directed along the pth direction of the Dp-brane worldvolume) and the gauge field fab.

The equation of motion of x reads:

∂a

[ ρ2

h

√

g̃ Ĝab ∂b x
]

− C

2
ǫij fij = 0 , (A.1)

while that of the gauge field is:

∂a

[

ρ2
√

g̃
(

1 +
q2

ρ4h2

)

fab
]

− C ǫbi∂i x = 0 , (A.2)
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where h and C are the functions of ρ defined in eqs. (2.66) and (3.33) and ǫbi is zero unless

b is an index along the two-sphere. Notice that eqs. (A.1) and (A.2) are coupled. Let us

decouple them by using the same method as that applied in [20] for the q = 0 case. As in

ref. [20] we define the following two types of vector spherical harmonics for the two-sphere:

Y l
i (S2) ≡ ∇i Y

l(S2) , Ŷ l
i (S2) ≡ 1√

g̃
g̃ij ǫjk ∇k Y l(S2) , (A.3)

where Y l(S2) is a scalar harmonic on S2. We now study the different types of modes

following closely the analysis of ref. [20].

A.1 Type I modes

The type I modes are the ones that involve the scalar field x and the components of the

gauge field strength along the S2 directions. The ansatz that we will adopt for x is the

following:

x = Λ(xµ, ρ)Y l(S2) . (A.4)

Moreover, if aa denote the components of the gauge field potential for fab, we will take:

aµ = 0 , aρ = 0 , ai = φ(xµ, ρ) Ŷ l
i (S2) . (A.5)

Using this ansatz, the equation for x becomes:

ρ2 ∂µ∂µ Λ + ∂ρ

[

ρ6

q2 + ρ4 h2
∂ρ Λ

]

− l(l + 1)
ρ4

q2 + ρ4 h2
Λ − C l(l + 1)φ = 0 . (A.6)

Then, by using the property ∇iŶ l
i = 0, which follows directly from the definition (A.3),

one can check that (A.2) reduces to:

∂µ∂µ φ + ∂ρ

[

ρ4

q2 + ρ4 h2
∂ρ φ

]

− l(l + 1)
ρ2

q2 + ρ4 h2
φ − C Λ = 0 . (A.7)

Let us now define the function V (xµ, ρ) as:

V = ρΛ , (A.8)

and the following second-order differential operator O2:

O2 ψ ≡ 1

C

[

∂µ∂µ ψ + ∂ρ

(

ρ4

q2 + ρ4 h2
∂ρψ

)]

. (A.9)

Then, the equations of V and φ can be written as the following system of differential

equations:

O2 V =

[

1

ρ
+ l(l + 1)

ρ2

(

q2 + ρ4 h2
)

C

]

V +
l(l + 1)

ρ
φ ,

O2 φ = l(l + 1)
ρ2

(

q2 + ρ4 h2
)

C
φ +

1

ρ
V . (A.10)
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In order to decouple this system, let us define the functions Z± as:

Z+ = V + lφ , Z− = V − (l + 1)φ . (A.11)

In terms of Z± the equations of the fluctuations are:

O2 Z+ =

[

l(l + 1)
ρ2

(

q2 + ρ4 h2
)

C
+

l + 1

ρ

]

Z+ ,

O2 Z− =

[

l(l + 1)
ρ2

(

q2 + ρ4 h2
)

C
− l

ρ

]

Z− . (A.12)

Following [21], one can analytically map eqs. (A.12) to the one for the transverse

scalars (3.37). First of all, let us introduce the reduced variables ̺, M̄ and q̄, defined

as:

̺ =
ρ

L
, M̄2 = − R4α

L4α−2
k2 , q̄ =

q

L2(1−α)R2α
. (A.13)

Then, after substituting Z± = eikxφ± in (A.12) and a little algebra, the equation for these

modes can be written as:

̺l+1 ∂̺

(

̺4 Q∂̺φ
+
)

+
[

M̄2 ̺l+1 − (l + 1) ∂̺

(

̺4+l Q
)]

φ+ = 0 , (A.14)

̺−l ∂̺

(

̺4 Q∂̺φ
−
)

+
[

M̄2̺−l + l ∂̺

(

̺3−l Q
)]

φ− = 0 , (A.15)

where Q = Q(̺) is the following function:

Q(̺) ≡ 1

q̄ 2 + ̺4

(1+̺2)2α

. (A.16)

Moreover, in terms of these reduced variables, the equation for the transverse scalars (3.37)

reads:

∂̺(̺
2∂̺ξ) +

[

M̄2

̺2 Q
− l(l + 1)

]

ξ = 0 . (A.17)

In order to relate (A.17) and (A.14) let us rewrite ξ = ̺−(l+1)F+ and multiply the

transverse scalar equation (A.17) by ̺l+3 Q. Then, one can check that the term with

F+ has a constant coefficient and, therefore, once we differentiate with respect to ̺, the

function F+ appears in the equation only through its derivatives. Then, upon defining

∂̺F
+ = ̺l g+, we conclude that the resulting equation for g+ is simply:

̺l ∂̺

(

̺4 Q∂̺g
+
)

+
[

M̄2 ̺l − l ∂̺

(

̺3+l Q
)]

g+ = 0 . (A.18)

This equation is exactly the same as the one for the φ+ mode (eq. ( A.14)) once we identify

l + 1 in the φ+ equation with l in the equation for g+.

It is easy to see that an alternative route can be followed relating the transverse scalar

equation (A.17) to the equation (A.15) for φ−, namely by defining ξ = ̺l F−. Then, after
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multiplying the equation by ̺2−l Q and taking the ̺ derivative, we see that, again, F−

appears only through its derivatives. Then, we can define ∂̺F
− = ̺−(l+1) g− and the

equation for g− becomes:

̺−(l+1) ∂̺

(

̺4 Q∂̺g
)

+
[

M̄2̺−(l+1) + (l + 1) ∂̺

(

̺3−(l+1) Q
)]

g− = 0 , (A.19)

which, indeed, is identical to the equation (A.15) for the φ− modes once we take into

account that l is now to be identified with l + 1 in the equation for g−.

To sum up, we have that the mapping of [21]:

φ+
l=L = ̺−L−1 ∂̺

(

̺L+2 ξ l=L+1

)

,

φ−
l=L = ̺L ∂̺

(

̺1−L ξ l=L−1

)

, (A.20)

also works in the Dp-D(p+2) intersection with flux studied here. As a consequence of

this result we can conclude that the mass spectrum of the type I modes displays the same

features of that corresponding to the transverse scalars, namely it is continuous and has

no mass gap.

A.2 Type II modes

Consider now a configuration with x = 0 and take the following ansatz for the gauge field:

aµ = φµ(x, ρ)Y l(S2) , aρ = 0 , ai = 0 , (A.21)

with the extra condition on φ:

∂µ φµ = 0 . (A.22)

Due to this condition, since x = 0, the equations of motion for x, aρ and ai are trivially

satisfied. The only remaining non-trivial equation is that for aµ, which reads:

[

ρ2 h2 +
q2

ρ2

]

∂ν∂ν φµ + ∂ρ

(

ρ2∂ρφµ

)

− l(l + 1)φµ = 0 . (A.23)

Now, if we write φµ in a plane-wave basis:

φµ = eikx ξµ , (A.24)

then this equation becomes:

∂ρ

(

ρ2∂ρξµ

)

+

{

[

ρ2 h2 +
q2

ρ2

]

M2 − l(l + 1)

}

ξµ = 0 , (A.25)

notice that this equation is the same as that in (3.37) for the transverse scalars.
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A.3 Type III modes

Let us take now as ansatz for the gauge field:

aµ = 0 , aρ = φ(x, ρ)Y l(S2) , ai = φ̃(x, ρ)Y l
i (S2) . (A.26)

With this ansatz it is straightforward to check that fij = 0. Therefore the equation of

motion for x is directly satisfied if we take x = 0. This leads to an equation of motion of

ai which reads:

∂µ∂µφ̃ + ∂ρ

[

ρ4

q2 + ρ4 h2
(∂ρφ̃ − φ)

]

= 0 . (A.27)

Moreover, the equation of motion of aρ is:

ρ2∂µ∂µφ + l(l + 1)
ρ4

q2 + ρ4 h2
(∂ρφ̃ − φ) = 0 , (A.28)

while that of aµ is:

∂µ( l(l + 1) φ̃ − ∂ρ (ρ2φ) ) = 0 . (A.29)

Clearly, eq. (A.29) is satisfied if:

l(l + 1) φ̃ = c + ∂ρ(ρ
2φ) , (A.30)

where c is an integration constant. Given this condition, it is straightforward to see that the

remaining two equations are indeed equivalent. Thus, we arrive to the following equation

for φ:

ρ2∂µ∂µφ − l(l + 1)
ρ4

q2 + ρ4 h2
φ +

ρ4

q2 + ρ4 h2
∂2

ρ(ρ2φ) = 0 . (A.31)

Writing φ = eikxζ(ρ) with M2 = −k2, we get the following differential equation for ζ(ρ):

∂2
ρ(ρ2ζ) +

[

(

h2ρ2 +
q2

ρ2

)

M2 − l(l + 1)

]

ζ = 0 . (A.32)

Eq. (A.32) can also be easily related to the one corresponding to the transverse scalars.

Indeed, it is a simple exercise to verify that, if one defines ξ = ρζ, eq. (A.32) becomes

exactly (3.37). In particular, this fact implies that the mass spectra of these type III

modes is also continous and gapless.

B. Supersymmetry of the M2-M5 intersection

In this appendix we will verify that the M2-M5 intersections with flux studied in section 4

are supersymmetric. We will verify this statement by looking at the kappa symmetry of

the M5-brane embedding, which previously requires the knowledge of the Killing spinors

of the background. In order to write these spinors in a convenient way, let us rewrite the

AdS4 × S7 near-horizon metric (4.2) of the M2-brane background as:

ds2 =
r4

R4
dx2

1,2 +
R2

r2
dr2 + R2 dΩ2

7 , (B.1)
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where dΩ2
7 is the line element of a unit seven-sphere and R is given in eq. (4.3). In what

follows we shall represent the metric of S7 in terms of polar coordinates θ1, · · · θ7:

dΩ2
7 = (dθ1)2 +

7
∑

k=2

(

k−1
∏

j=1

(sin θj)2

)

(dθk)2 . (B.2)

Moreover, we shall consider the vielbein:

exµ

=
r2

R2
dxµ , (µ = 0, 1, 2) ,

er =
R

r
dr ,

eθi

= R

(

i−1
∏

j=1

sin θj

)

dθi , (i = 1, · · · , 7) , (B.3)

where, in the last line, it is understood that for i = 1 the product is absent.

The Killing spinors of this background are obtained by solving the equation δψM = 0,

where the supersymmetric variation of the gravitino in eleven dimensional supergravity is

given by:

δψM = DM ǫ +
1

288

(

Γ N1···N4
M − 8δN1

M Γ N2···N4

)

ǫ F
(4)
N1···N4

. (B.4)

In eq. (B.4) F (4) = dC(3), where C(3) has been written in eq. (4.4). In order to write

equation (B.4) more explicitly, let us define the matrix:

Γ∗ ≡ Γx0x1x2 . (B.5)

Notice that Γ2
∗ = 1. From the equations δψxα = δψr = 0 we get the value of the derivatives

of ǫ with respect to the AdS4 coordinates, namely:

∂xα ǫ = − r2

R3
Γxαr ( 1 + Γ∗ ) ,

∂r ǫ = −1

r
Γ∗ ǫ . (B.6)

First of all, let us solve the first equation in (B.6) by taking ǫ = ǫ1 with Γ∗ǫ1 = −ǫ1, where

ǫ1 is independent of the Minkowski coordinates xα. The second equation in (B.6) fixes the

dependence of ǫ on r, which is

ǫ1 = rη1 , Γ∗η1 = −η1 , (B.7)

where η1 only depends on the coordinates of the S7.

Let us now find a second solution of eq. (B.6), given by the ansatz:

ǫ2 = ( f(r) Γr + g(r)xα Γxα ) η2 , (B.8)
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where f(r) and g(r) are functions to be determined and η2 is a spinor independent of xα

and r. By plugging this ansatz in (B.6) we get the conditions:

g(r) = −2r2

R3
f(r) , Γ∗η2 = −η2 ,

f ′(r) = −f(r)

r
, g′(r) =

g(r)

r
, (B.9)

which can be immediately integrated, giving rise to the following spinor:

ǫ2 =
( 1

r
Γr − 2r

R3
xα Γxα

)

η2 , Γ∗η2 = −η2 , (B.10)

where η2 = η2(θ). Then, a general Killing spinor of AdS4 × S7 can be written as ǫ1 + ǫ2,

namely as:

ǫ = r η1(θ) +
( 1

r
Γr − 2r

R3
xα Γxα

)

η2(θ) , Γ∗ηi(θ) = −ηi(θ) . (B.11)

The dependence of the ηi’s on the angle θ1 can be determined from the condition

δψθ1 = 0, which reduces to:

∂θ1 ǫ = −1

2
Γrθ1 Γ∗ ǫ . (B.12)

It can be checked that eq. (B.12) gives rise to the following dependence of the spinor ηi on

the angle θ1:

ηi = e
θ1

2
Γ

rθ1 η̃i , (B.13)

where η̃i does not depend on θ1. Similarly, one can get the dependence of the ηi’s on the

other angles of the seven-sphere. The result can be written as:

ηi(θ) = U(θ) η̂i , (B.14)

with η̂i being constant spinors such that Γ∗η̂i = −η̂i and U(θ) is the following rotation

matrix:

U(θ) = e
θ1

2
Γ

rθ1

7
∏

j=2

e
θj

2
Γ

θj−1 θj . (B.15)

Notice that ǫ depends on two arbitrary constant spinors η̂1 and η̂2 of sixteen components

each one and, thus, this background has the maximal number of supersymmetries, namely

thirty-two.

B.1 Kappa symmetry

The number of supersymmetries preserved by the M5-brane probe is the number of inde-

pendent solutions of the equation Γκǫ = ǫ, where ǫ is one of the Killing spinors (B.11) and

Γκ is the kappa symmetry matrix of the PST formalism [48, 50]. In order to write the

expression of this matrix, let us define the following quantities:

νp ≡ ∂pa
√

−(∂a)2
, tm ≡ 1

8
ǫmn1n2p1p2q H̃n1n2 H̃p1p2 νq . (B.16)
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Then, the kappa symmetry matrix is:

Γκ = − νmγm

√

−det(g + H̃)

[

γntn +

√−g

2
γnp H̃np +

1

5!
γi1···i5 ǫi1···i5nνn

]

. (B.17)

In eq. (B.17) g is the induced metric on the worldvolume, γi1i2··· are antisymmetrized

products of the worldvolume Dirac matrices γi = ∂iX
M E

N
M ΓN and the indices are raised

with the inverse of g.

We shall consider here the embedding with L = 0, which corresponds to having massless

quarks. In the polar coordinates we are using for the S7 this corresponds to taking:

θ1 = · · · = θ4 =
π

2
. (B.18)

Moreover, we shall denote the three remaining angles of the S7 as χi ≡ θ4+i, (i = 1, 2, 3).

We will describe the M5-brane embeddings by means of the following set of worldvolume

coordinates:

ξi = (x0, x1, r, χ1, χ2, χ3) , (B.19)

and we will assume that:

x ≡ x2 = x(r) . (B.20)

The induced metric for such embedding is given by (4.12) with L = 0 and ρ = r, namely:

gij dξi dξj =
r4

R4
dx2

1,1 +
R2

r2

(

1 +
r6

R6
x′2

)

dr2 + R2 dΩ2
3 . (B.21)

The induced Dirac matrices for this embedding are:

γxµ =
r2

R2
Γxµ , (µ = 0, 1) ,

γr =
R

r

(

Γr +
r3

R3
x′ Γx2

)

,

γΩ3 ≡ γχ1 χ2 χ3 = R3
√

g̃ ΓΩ3 , (B.22)

where
√

g̃ = sin2 χ1 sin χ2 and ΓΩ3 ≡ Γχ1 χ2 χ3 . Notice also that:

γx0
= −R2

r2
Γx0 ,

γx1
=

R2

r2
Γx1 ,

γr =
r

R

(

1 +
r6

R6
x′2

)−1 (

Γr +
r3

R3
x′ Γx2

)

. (B.23)

We will also assume that we have switched on a magnetic worldvolume gauge field F ,

parametrized as in (4.11) in terms of a flux number q. Moreover, in the gauge a = x1, the

only non-vanishing component of νp is:

νx1 = −i
r2

R2
, (B.24)
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and one can check that the only non-vanishing component of H̃ is H̃x0r, whose expression

is given by (4.14) with L = 0 and ρ = r. Also, the worldvolume vector tm defined in (B.16)

is zero and one can verify that the kappa symmetry matrix Γκ takes the form:

Γκ =

√
g̃ r3

√

−det(g + H̃)

(

q

R3
+ ΓΩ3

) (

Γrx2 +
r3

R3
x′

)

Γ∗ . (B.25)

For the embeddings we are interested in the function x(r) is given by:

x = x̄ +
q

2

1

r2
, (B.26)

where x̄ is a constant (see eq. (4.18)). In order to express the form of Γκ for these embed-

dings, let us define the matrix P as:

P ≡ Γx2r ΓΩ3 . (B.27)

Notice that P2 = 1. Moreover, the kappa symmetry matrix can be written as:

Γκ = − 1

1 + q2

R6

(

P +
q2

R6
+

q

R3
Γx2r (1 − P)

)

Γ∗ . (B.28)

Let us represent the Killing spinors ǫ on the M5-brane worldvolume as is eq. (B.11). By

using the explicit function x(r) written in eq. (B.26), one gets:

ǫ =
1

r

(

Γrη2 − q

R3
Γx2 η2

)

+ r
(

η1 − 2x̄

R3
Γx2 η2

)

− 2r

R3
xp Γxp η2 , (B.29)

where the index p can take the values 0, 1 and we have organized the right-hand side

of (B.29) according to the different dependences on r and xp. By substituting (B.28)

and (B.29) into the equation Γκǫ = ǫ and comparing the terms on the two sides of this

equation that have the same dependence on the coordinates, one gets the following three

equations:

(P + 1 ) η2 = 0 ,
[

1 − q

R3
Γx2r

]

(P − 1 )

(

η1 − 2x̄

R3
Γx2 η2

)

= 0 ,

[

q

R3
Γx2r − 1

]

Γxp (P + 1 ) η2 = 0 . (B.30)

In order to solve these equations, let us classify the sixteen spinors η1 according to

their P-eigenvalue as:

P η
(±)
1 = ±η

(±)
1 . (B.31)

Notice that P and Γ∗ commute and, then, the condition of having well-defined P-eigenvalue

is perfectly compatible with having negative Γ∗-chirality. We can now solve the sys-

tem (B.30) by taking η2 = 0 (which solves the first and third equation) and choosing
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η1 to be one of the eight spinors η
(+)
1 of positive P-eigenvalue. Thus, this solution of (B.30)

is:

η1 = η
(+)
1 , η2 = 0 . (B.32)

Another set of solutions corresponds to taking spinors η
(−)
1 of negative P-eigenvalue and a

spinor η2 related to η
(−)
1 as follows:

η2 =
R3

2x̄
Γx2 η

(−)
1 . (B.33)

Notice that the second equation in (B.30) is automatically satisfied. Moreover, as

[P,Γx2 ] = 0, the spinor η2 in (B.33) has negative P-eigenvalue and, therefore, the first

and third equation in the system (B.30) are also satisfied.

In order to complete the proof of the supersymmetry of our M2-M5 configuration we

must verify that the kappa symmetry conditions found above can be fulfilled at all points

of the M5-brane worldvolume. Notice that, when evaluated for the embedding (B.18), the

spinors η1,2 depend on the angles χi that parametrize the S3 ⊂ S7. To ensure that the

conditions (B.31) and (B.33) can be imposed at all points of the S3 we should be able

to translate them into some algebraic conditions for the constant spinors η̂i. Recall (see

eq. (B.14)) that the spinors ηi and η̂i are related by means of the matrix U(θ). Let us

denote by U∗(χ) the rotation matrix restricted to the worldvolume, i.e.:

U∗(χ) ≡ U(θ)|θ1=···=θ4= π
2

. (B.34)

Moreover, let us define P̂ as the result of conjugating the matrix P with the rotation matrix

U∗(χ):

P̂ ≡ U∗(χ)−1 P U∗(χ) . (B.35)

A simple calculation by using (B.15) shows that P̂ is the following constant matrix:

P̂ = Γx2θ4 ΓΩ3 . (B.36)

Moreover, from the definition of P̂ it follows that:

P η
(±)
1 = ±η

(±)
1 ⇐⇒ P̂ η̂

(±)
1 = ±η̂

(±)
1 . (B.37)

Therefore, the condition (B.31) for η1 is equivalent to require that the corresponding con-

stant spinor η̂1 be an eigenstate of the constant matrix P̂ . Finally, as [U∗,Γx2 ] = 0,

eq. (B.33) is equivalent to the following condition, to be satisfied by the constant spinors

η̂1 and η̂2:

η̂2 =
R3

2x̄
Γx2 η̂

(−)
1 . (B.38)

Taken together, these results prove that the kappa symmetry condition Γκ ǫ = ǫ can

be imposed at all points of the worldvolume of our M5-brane embedding and that this

configuration is 1
2 -supersymmetric.
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[11] C. Núñez, A. Paredes and A.V. Ramallo, Flavoring the gravity dual of N = 1 Yang-Mills with

probes, JHEP 12 (2003) 024 [hep-th/0311201].

[12] S. Hong, S. Yoon and M.J. Strassler, Quarkonium from the fifth dimension, JHEP 04 (2004)

046 [hep-th/0312071].

[13] N.J. Evans and J.P. Shock, Chiral dynamics from AdS space, Phys. Rev. D 70 (2004) 046002

[hep-th/0403279];

N. Evans, J.P. Shock and T. Waterson, D7 brane embeddings and chiral symmetry breaking,

JHEP 03 (2005) 005 [hep-th/0502091];

– 55 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111
http://jhep.sissa.it/stdsearch?paper=05%282001%29008
http://arxiv.org/abs/hep-th/0011156
http://jhep.sissa.it/stdsearch?paper=06%282001%29063
http://jhep.sissa.it/stdsearch?paper=06%282001%29063
http://arxiv.org/abs/hep-th/0105132
http://jhep.sissa.it/stdsearch?paper=06%282002%29043
http://arxiv.org/abs/hep-th/0205236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C90%2C091601
http://arxiv.org/abs/hep-th/0211107
http://jhep.sissa.it/stdsearch?paper=07%282003%29049
http://arxiv.org/abs/hep-th/0304032
http://jhep.sissa.it/stdsearch?paper=09%282003%29047
http://arxiv.org/abs/hep-th/0305049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C066007
http://arxiv.org/abs/hep-th/0306018
http://jhep.sissa.it/stdsearch?paper=05%282006%29011
http://arxiv.org/abs/hep-th/0509219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C54%2C266
http://arxiv.org/abs/hep-th/0601130
http://jhep.sissa.it/stdsearch?paper=05%282004%29041
http://arxiv.org/abs/hep-th/0311270
http://jhep.sissa.it/stdsearch?paper=10%282004%29029
http://jhep.sissa.it/stdsearch?paper=10%282004%29029
http://arxiv.org/abs/hep-th/0404260
http://jhep.sissa.it/stdsearch?paper=06%282004%29019
http://arxiv.org/abs/hep-th/0404248
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA20%2C3428
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C207
http://arxiv.org/abs/hep-th/0311084
http://arxiv.org/abs/hep-th/0506021
http://jhep.sissa.it/stdsearch?paper=09%282003%29017
http://arxiv.org/abs/hep-th/0307218
http://jhep.sissa.it/stdsearch?paper=12%282003%29024
http://arxiv.org/abs/hep-th/0311201
http://jhep.sissa.it/stdsearch?paper=04%282004%29046
http://jhep.sissa.it/stdsearch?paper=04%282004%29046
http://arxiv.org/abs/hep-th/0312071
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C046002
http://arxiv.org/abs/hep-th/0403279
http://jhep.sissa.it/stdsearch?paper=03%282005%29005
http://arxiv.org/abs/hep-th/0502091


J
H
E
P
0
5
(
2
0
0
7
)
0
4
4

J.P. Shock, Canonical coordinates and meson spectra for scalar deformed N = 4 SYM from

the AdS/CFT correspondence, JHEP 10 (2006) 043 [hep-th/0601025].

[14] K. Ghoroku and M. Yahiro, Chiral symmetry breaking driven by dilaton, Phys. Lett. B 604

(2004) 235 [hep-th/0408040]; Holographic model for mesons at finite temperature, Phys. Rev.

D 73 (2006) 125010 [hep-ph/0512289];

K. Ghoroku, T. Sakaguchi, N. Uekusa and M. Yahiro, Flavor quark at high temperature from

a holographic model, Phys. Rev. D 71 (2005) 106002 [hep-th/0502088];

I. Brevik, K. Ghoroku and A. Nakamura, Meson mass and confinement force driven by

dilaton, Int. J. Mod. Phys. D 15 (2006) 57 [hep-th/0505057].

[15] K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of

mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195];

S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase

transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099];

C. Hoyos, K. Landsteiner and S. Montero, Holographic meson melting, JHEP 04 (2007) 031

[hep-th/0612169];

D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, hep-th/0701132.

[16] D. Arean, D.E. Crooks and A.V. Ramallo, Supersymmetric probes on the conifold, JHEP 11

(2004) 035 [hep-th/0408210].

[17] S. Kuperstein, Meson spectroscopy from holomorphic probes on the warped deformed conifold,

JHEP 03 (2005) 014 [hep-th/0411097].

[18] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor.

Phys. 113 (2005) 843 [hep-th/0412141];, More on a holographic dual of QCD, Prog. Theor.

Phys. 114 (2006) 1083 [hep-th/0507073].

[19] D. Arean, A. Paredes and A.V. Ramallo, Adding flavor to the gravity dual of

non-commutative gauge theories, JHEP 08 (2005) 017 [hep-th/0505181].

[20] D. Arean and A.V. Ramallo, Open string modes at brane intersections, JHEP 04 (2006) 037

[hep-th/0602174].

[21] R.C. Myers and R.M. Thomson, Holographic mesons in various dimensions, JHEP 09 (2006)

066 [hep-th/0605017].
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